问题描述
我正在内置infert
数据集上的插入符中运行glmnet模型,例如
infert_y <- factor(infert$case) %>% plyr::revalue(c("0"="control","1"="case"))
infert_x <- subset(infert,select=-case)
new.x <- model.matrix(~.,infert_x)
# Create cross-validation folds:
myFolds <- createFolds(infert_y,k = 10)
# Create reusable trainControl object:
myControl_categorical <- trainControl(
summaryFunction = twoClassSummary,classprobs = TRUE,# IMPORTANT!
verboseIter = TRUE,savePredictions = TRUE,index = myFolds
)
model_glmnet_pca <- train(
x = new.x,y = infert_y,metric = "ROC",method = "glmnet",preProcess=c("zv","nzv","medianImpute","center","scale","pca"),trControl = myControl_categorical,tuneGrid= expand.grid(alpha= seq(0,1,length = 20),lambda = seq(0.0001,length = 100))
)
但是当我尝试获取系数时:
bestlambda <- model_glmnet_pca$results$lambda[model_glmnet_pca$results$ROC == max(model_glmnet_pca$results$ROC)]
coef(model_glmnet_pca,s=bestlambda)
返回:
NULL
我尝试过:
coef.glmnet(model_glmnet_pca,s=bestlambda)
返回:
Error in predict.train(object,s = s,type = "coefficients",exact = exact,:
type must be either "raw" or "prob"
但是可以肯定,当我调用coef()时,我的“类型”参数设置为“系数”吗?如果我尝试
coef.glmnet(model_glmnet_pca,s=bestlambda,type="prob")
它返回:
Error in predict.train(object,:
formal argument "type" matched by multiple actual arguments
我很困惑,有人可以指出我在做什么错吗?
解决方法
要从最佳模型中获取系数,可以使用:
coef(model_glmnet_pca$finalModel,model_glmnet_pca$finalModel$lambdaOpt)
例如参见this link on using regularised regression models with caret
。