问题描述
这里是the tutorial I'm following。
pom.xml文件是dl4j examples文件夹随附的默认文件,因此那里应该没有问题,但仍然有错误。
这是代码:
package org.deeplearning4j.self;
import org.deeplearning4j.datasets.iterator.impl.EmnistDataSetIterator;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.Weightinit;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.Adam;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import java.io.IOException;
public class first {
int batchSize = 128; // how many examples to simultaneously train in the network
EmnistDataSetIterator.Set emnistSet = EmnistDataSetIterator.Set.BALANCED;
EmnistDataSetIterator emnistTrain;
{ try { emnistTrain = new EmnistDataSetIterator(emnistSet,batchSize,true); } catch (IOException e) { e.printstacktrace(); } }
EmnistDataSetIterator emnistTest;
{ try { emnistTest = new EmnistDataSetIterator(emnistSet,false); } catch (IOException e) { e.printstacktrace(); } }
int outputNum = EmnistDataSetIterator.numLabels(emnistSet);// total output classes
int rngSeed = 123; // integer for reproducability of a random number generator
int numRows = 28; // number of "pixel rows" in an mnist digit
int numColumns = 28;
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(rngSeed)
.updater(new Adam())
.l2(1e-4)
.list()
.layer(new DenseLayer.Builder()
.nIn(numRows * numColumns) // Number of input datapoints.
.nOut(1000) // Number of output datapoints.
.activation(Activation.RELU) // Activation function.
.weightinit(Weightinit.XAVIER) // Weight initialization.
.build())
.layer(new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.nIn(1000)
.nOut(outputNum)
.activation(Activation.softmax)
.weightinit(Weightinit.XAVIER)
.build())
.build();
MultiLayerNetwork network = new MultiLayerNetwork(conf);
network.init();
// pass a training listener that reports score every 10 iterations
int eachIterations = 10;
network.addListeners(new scoreIterationListener(eachIterations));
}
我正在使用IntelliJ。
我在课堂上遇到的错误是:
在“网络”上调用的两个方法均无法识别,“ init()”和“ addListeners()”上均带有“无法解析符号”。它还在“网络”上说“从未使用过现场网络”。
另外,int“ eachIterations”在addListeners()方法内部具有“未知类”错误。
这是pom.xml文件:
<?xml version="1.0" encoding="UTF-8"?>
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~ copyright (c) 2020 Konduit K.K.
~ copyright (c) 2015-2019 Skymind,Inc.
~
~ This program and the accompanying materials are made available under the
~ terms of the Apache License,Version 2.0 which is available at
~ https://www.apache.org/licenses/LICENSE-2.0.
~
~ Unless required by applicable law or agreed to in writing,software
~ distributed under the License is distributed on an "AS IS" BASIS,WITHOUT
~ WARRANTIES OR CONDITIONS OF ANY KIND,either express or implied. See the
~ License for the specific language governing permissions and limitations
~ under the License.
~
~ SPDX-License-Identifier: Apache-2.0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-->
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.deeplearning4j</groupId>
<artifactId>dl4j-examples</artifactId>
<version>1.0.0-beta7</version>
<name>Introduction to DL4J</name>
<description>A set of examples introducing the DL4J framework</description>
<properties>
<dl4j-master.version>1.0.0-beta7</dl4j-master.version>
<!-- Change the nd4j.backend property to nd4j-cuda-X-platform to use CUDA GPUs -->
<!-- <nd4j.backend>nd4j-cuda-10.2-platform</nd4j.backend> -->
<nd4j.backend>nd4j-native</nd4j.backend>
<java.version>1.8</java.version>
<maven-compiler-plugin.version>3.6.1</maven-compiler-plugin.version>
<maven.minimum.version>3.3.1</maven.minimum.version>
<exec-maven-plugin.version>1.4.0</exec-maven-plugin.version>
<maven-shade-plugin.version>2.4.3</maven-shade-plugin.version>
<jcommon.version>1.0.23</jcommon.version>
<jfreechart.version>1.0.13</jfreechart.version>
<logback.version>1.1.7</logback.version>
</properties>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.freemarker</groupId>
<artifactId>freemarker</artifactId>
<version>2.3.29</version>
</dependency>
<dependency>
<groupId>io.netty</groupId>
<artifactId>netty-common</artifactId>
<version>4.1.48.Final</version>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.nd4j</groupId>
<artifactId>${nd4j.backend}</artifactId>
<version>${dl4j-master.version}</version>
</dependency>
<dependency>
<groupId>org.datavec</groupId>
<artifactId>datavec-api</artifactId>
<version>${dl4j-master.version}</version>
</dependency>
<dependency>
<groupId>org.datavec</groupId>
<artifactId>datavec-data-image</artifactId>
<version>${dl4j-master.version}</version>
</dependency>
<dependency>
<groupId>org.datavec</groupId>
<artifactId>datavec-local</artifactId>
<version>${dl4j-master.version}</version>
</dependency>
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-datasets</artifactId>
<version>${dl4j-master.version}</version>
</dependency>
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-core</artifactId>
<version>${dl4j-master.version}</version>
</dependency>
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-ui</artifactId>
<version>${dl4j-master.version}</version>
</dependency>
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-zoo</artifactId>
<version>${dl4j-master.version}</version>
</dependency>
<!-- ParallelWrapper & ParallelInference live here -->
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-parallel-wrapper</artifactId>
<version>${dl4j-master.version}</version>
</dependency>
<!-- Used in the Feedforward/classification/MLP* and Feedforward/regression/RegressionMathFunctions example -->
<dependency>
<groupId>jfree</groupId>
<artifactId>jfreechart</artifactId>
<version>${jfreechart.version}</version>
</dependency>
<dependency>
<groupId>org.jfree</groupId>
<artifactId>jcommon</artifactId>
<version>${jcommon.version}</version>
</dependency>
<!-- Used for downloading data in some of the examples -->
<dependency>
<groupId>org.apache.httpcomponents</groupId>
<artifactId>httpclient</artifactId>
<version>4.3.5</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>${logback.version}</version>
</dependency>
<dependency>
<groupId>org.datavec</groupId>
<artifactId>datavec-data-codec</artifactId>
<version>${dl4j-master.version}</version>
</dependency>
<dependency>
<groupId>org.bytedeco</groupId>
<artifactId>javacv-platform</artifactId>
<version>1.5.2</version>
</dependency>
</dependencies>
<!-- Maven Enforcer: Ensures user has an up to date version of Maven before building -->
<build>
<plugins>
<plugin>
<artifactId>maven-enforcer-plugin</artifactId>
<version>1.0.1</version>
<executions>
<execution>
<id>enforce-default</id>
<goals>
<goal>enforce</goal>
</goals>
<configuration>
<rules>
<requireMavenVersion>
<version>[${maven.minimum.version},)</version>
<message>********** Minimum Maven Version is ${maven.minimum.version}. Please upgrade Maven before continuing (run "mvn --version" to check). **********</message>
</requireMavenVersion>
</rules>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>${maven-compiler-plugin.version}</version>
<configuration>
<source>1.7</source>
<target>1.7</target>
</configuration>
</plugin>
<plugin>
<groupId>com.lewisd</groupId>
<artifactId>lint-maven-plugin</artifactId>
<version>0.0.11</version>
<configuration>
<failOnViolation>true</failOnViolation>
<onlyRunRules>
<rule>DuplicateDep</rule>
<rule>RedundantPluginVersion</rule>
<!-- Rules incompatible with Java 9
<rule>VersionProp</rule>
<rule>DotVersionProperty</rule> -->
</onlyRunRules>
</configuration>
<executions>
<execution>
<id>pom-lint</id>
<phase>validate</phase>
<goals>
<goal>check</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>${exec-maven-plugin.version}</version>
<executions>
<execution>
<goals>
<goal>exec</goal>
</goals>
</execution>
</executions>
<configuration>
<executable>java</executable>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>${maven-shade-plugin.version}</version>
<configuration>
<shadedArtifactAttached>true</shadedArtifactAttached>
<shadedClassifierName>${shadedClassifier}</shadedClassifierName>
<createDependencyReducedPom>true</createDependencyReducedPom>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>org/datanucleus/**</exclude>
<exclude>meta-inf/*.SF</exclude>
<exclude>meta-inf/*.DSA</exclude>
<exclude>meta-inf/*.RSA</exclude>
</excludes>
</filter>
</filters>
</configuration>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>reference.conf</resource>
</transformer>
<transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.5.1</version>
<configuration>
<source>${java.version}</source>
<target>${java.version}</target>
</configuration>
</plugin>
</plugins>
<pluginManagement>
<plugins>
<plugin>
<groupId>org.eclipse.m2e</groupId>
<artifactId>lifecycle-mapping</artifactId>
<version>1.0.0</version>
<configuration>
<lifecycleMappingMetadata>
<pluginExecutions>
<pluginExecution>
<pluginExecutionFilter>
<groupId>com.lewisd</groupId>
<artifactId>lint-maven-plugin</artifactId>
<versionRange>[0.0.11,)</versionRange>
<goals>
<goals><goal>check</goal></goals>
</goals>
</pluginExecutionFilter>
<action>
<ignore/>
</action>
</pluginExecution>
</pluginExecutions>
</lifecycleMappingMetadata>
</configuration>
</plugin>
</plugins>
</pluginManagement>
</build>
</project>
此处错误为“ $ {shadedClassifier}” shadedClassifier为红色,错误为:“无法解析符号'shadedClassifier'”
所以我尝试用“ mvn clean install”重新安装Maven,但现在不起作用。我以前安装得很好,但现在却出现错误。
Screenshot of cmd when trying to run "mvn clean install"
感谢您的帮助。
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)