问题描述
我从sklearn的训练数据中训练了一个TFIDF,当我将词汇表应用于新数据时,它给了我一个关键的错误,因为它没有学到。 我该如何解决?
这是我的代码。
def feature_engineering(self,inputs):
x = [self.analyser(seq) for seq in inputs]
return x
def fit(self,inputs):
if self.vocabulary and self.analyser:
pass
else:
vectorizer = TfidfVectorizer(
ngram_range=(self.config_dict["min_n_gram"],self.config_dict["max_n_gram"]),lowercase=False,stop_words=None,min_df=2)
vectorizer.fit(inputs)
self.analyser = vectorizer.build_analyzer()
self.vocabulary = vectorizer.vocabulary_
save_object(os.path.join(self.feature_extraction_folder,"analyzer.pickle"),self.analyser)
save_object(os.path.join(self.feature_extraction_folder,"vocabulary.pickle"),self.vocabulary)
def transform(self,inputs):
vocab_size = len(self.vocabulary)
inputs = self.feature_engineering(inputs)
inputs = [[self.vocabulary[x] for x in l] for l in inputs]##This line generate an error
return np.array(inputs)
解决方法
使用if语句解决我的问题
inputs = [[self.vocabulary[x] for x in l if x in self.vocabulary.keys()] for l in inputs]```