问题描述
我正在计算Sentinel2上NDVI图像收集的统计信息。
我在定义的时间段内和特定区域获得了S2_SR的图像集合,然后去除了云层。
var S2 = ee.ImageCollection('copERNICUS/S2_SR')
//filter start and end date
.filterDate('2019-03-01','2020-03-31')
//filter according to drawn boundary
.filterBounds(ROI);
var palettes = require('users/gena/packages:palettes');
var palette = palettes.colorbrewer.Spectral[8];
// Function to mask cloud from built-in quality band
// @R_855_4045@ion on cloud
var computeQAbits = function(image,start,end,newName) {
var pattern = 0;
for (var i=start; i<=end; i++) {
pattern += Math.pow(2,i);
}
return image.select([0],[newName]).bitwiseAnd(pattern).rightShift(start);
};
var sentinel2 = function(image) {
var cloud_mask = image.select("QA60");
var opaque = computeQAbits(cloud_mask,10,"opaque");
var cirrus = computeQAbits(cloud_mask,11,"cirrus");
var mask = opaque.or(cirrus);
return image.updateMask(mask.not());
}
然后我已经计算出每个日期的NDVI和NDWI;
var addNDVI = function(image) {
var ndvi = image.normalizedDifference(['B5','B4']).multiply(10000).rename('NDVI');
return image.addBands(ndvi);
};
var addNDWI = function(image) {
var ndwi = image.normalizedDifference(['B3','B8']).multiply(10000).rename('NDWI');
return image.addBands(ndwi);
};
// Add NDVI band to image collection
var S2 = S2.map(addNDVI);
var S2 = S2.map(addNDWI);
var NDVI = S2.select(['NDVI']);
var NDWI = S2.select(['NDWI']);
然后,我计算了我的统计数据,最小值,最大值,平均值,中位数,标准偏差。 这样一来,我就可以得出一段时间内单个像素的NDVI和NDWI指数的最小值,最大值,平均值,中位数,标准偏差。
// Add indices bands to image collection
var reducer1 = ee.Reducer.mean();
var reducers = reducer1.combine({reducer2: ee.Reducer.median(),sharedInputs: true})
.combine({reducer2: ee.Reducer.max(),sharedInputs: true})
.combine({reducer2: ee.Reducer.min(),sharedInputs: true})
.combine({reducer2: ee.Reducer.stdDev(),sharedInputs: true});
var results_NDVI = NDVI.reduce(reducers);
var results_NDWI = NDWI.reduce(reducers);
var results = results_NDVI.addBands(results_NDWI);
var results_integer = results.int16();
但是,我注意到由于云的缘故,还有一些剩余的异常值。在计算统计数据之前,我想删除NDVI和NDWI的值,这些值低于第5个百分点,但高于第95个百分点。为了确保我的统计数据不受异常值的偏见。
谢谢
解决方法
我建议使用化简器(即ee.Reducer.percentile([95]))计算第95个百分位数和第5个百分位数,然后对图像进行遮罩:
results = results.updateMask(results.gt(bottomPercentile).and(results.lt(topPercentile)));