问题描述
我具有以下数据框,并且我将在每个月的工作日的所有天和一个月的周末的所有天之间执行t检验。
> +-----+------------+-----------+---------+-----------+ | id | usage_day | dow | tow | daily_avg |
> +-----+------------+-----------+---------+-----------+ | c96 | 01/09/2020 | Tuesday | week | 393.07 |
> +-----+------------+-----------+---------+-----------+ | c96 | 02/09/2020 | Wednesday | week | 10.38 |
> +-----+------------+-----------+---------+-----------+ | c96 | 03/09/2020 | Thursday | week | 429.35 |
> +-----+------------+-----------+---------+-----------+ | c96 | 04/09/2020 | Friday | week | 156.20 |
> +-----+------------+-----------+---------+-----------+ | c96 | 05/09/2020 | Saturday | weekend | 346.22 |
> +-----+------------+-----------+---------+-----------+ | c96 | 06/09/2020 | Sunday | weekend | 106.53 |
> +-----+------------+-----------+---------+-----------+ | c96 | 08/09/2020 | Tuesday | week | 194.74 |
> +-----+------------+-----------+---------+-----------+ | c96 | 10/09/2020 | Thursday | week | 66.30 |
> +-----+------------+-----------+---------+-----------+ | c96 | 17/09/2020 | Thursday | week | 163.84 |
> +-----+------------+-----------+---------+-----------+ | c96 | 18/09/2020 | Friday | week | 261.81 |
> +-----+------------+-----------+---------+-----------+ | c96 | 19/09/2020 | Saturday | weekend | 410.30 |
> +-----+------------+-----------+---------+-----------+ | c96 | 20/09/2020 | Sunday | weekend | 266.28 |
> +-----+------------+-----------+---------+-----------+ | c96 | 23/09/2020 | Wednesday | week | 346.18 |
> +-----+------------+-----------+---------+-----------+ | c96 | 24/09/2020 | Thursday | week | 20.67 |
> +-----+------------+-----------+---------+-----------+ | c96 | 25/09/2020 | Friday | week | 222.23 |
> +-----+------------+-----------+---------+-----------+ | c96 | 26/09/2020 | Saturday | weekend | 449.84 |
> +-----+------------+-----------+---------+-----------+ | c96 | 27/09/2020 | Sunday | weekend | 438.47 |
> +-----+------------+-----------+---------+-----------+ | c96 | 28/09/2020 | Monday | week | 10.44 |
> +-----+------------+-----------+---------+-----------+ | c96 | 29/09/2020 | Tuesday | week | 293.59 |
> +-----+------------+-----------+---------+-----------+ | c96 | 30/09/2020 | Wednesday | week | 194.49 |
> +-----+------------+-----------+---------+-----------+
我的脚本如下,但不幸的是它太慢了,不是熊猫的做事方式。 我如何才能更有效地做到这一点?
from scipy.stats import ttest_ind,ttest_ind_from_stats
p_val = []
stat_flag = []
all_ids = df.id.unique()
alpha = 0.05
print(len(all_ids))
for id in all_ids:
t = df[df.id == id]
group1 = t[t.tow == 'week']
group2 = t[t.tow == 'weekend']
t,p_value_ttest = ttest_ind(group1.daily_avg,group2.daily_avg,equal_var=False)
if p_value_ttest < alpha:
p_val.append(p_value_ttest)
stat_flag.append(1)
else:
p_val.append(p_value_ttest)
stat_flag.append(0)
p-val给出每个id的p值。
解决方法
如果没有示例数据,我将无法进行基准测试,但是也许您可以尝试使用groupby而不是for循环:
for id,t in df.groupby('id'):
group1 = t[t.tow == 'week']
group2 = t[t.tow == 'weekend']
t,p_value_ttest = ttest_ind(group1.daily_avg,group2.daily_avg,equal_var=False)
if p_value_ttest < alpha:
p_val.append(p_value_ttest)
stat_flag.append(1)
else:
p_val.append(p_value_ttest)
stat_flag.append(0)
,
数据集
基于您提供的数据集:
import io
from scipy import stats
import pandas as pd
s = """id|usage_day|dow|tow|daily_avg
c96|01/09/2020|Tuesday|week|393.07
c96|02/09/2020|Wednesday|week|10.38
c96|03/09/2020|Thursday|week|429.35
c96|04/09/2020|Friday|week|156.20
c96|05/09/2020|Saturday|weekend|346.22
c96|06/09/2020|Sunday|weekend|106.53
c96|08/09/2020|Tuesday|week|194.74
c96|10/09/2020|Thursday|week|66.30
c96|17/09/2020|Thursday|week|163.84
c96|18/09/2020|Friday|week|261.81
c96|19/09/2020|Saturday|weekend|410.30
c96|20/09/2020|Sunday|weekend|266.28
c96|23/09/2020|Wednesday|week|346.18
c96|24/09/2020|Thursday|week|20.67
c96|25/09/2020|Friday|week|222.23
c96|26/09/2020|Saturday|weekend|449.84
c96|27/09/2020|Sunday|weekend|438.47
c96|28/09/2020|Monday|week|10.44
c96|29/09/2020|Tuesday|week|293.59
c96|30/09/2020|Wednesday|week|194.49"""
df = pd.read_csv(io.StringIO(s),sep='|')
为清楚起见,我添加了具有相似数据的新id
:
groupby
MCVE
您不必求助于任何显式循环,而是利用apply
方法,该方法可在框架上运行,并且还可以与groupby
一起使用。
为此,我们定义了一个在DataFrame上执行所需测试的函数(df2 = df.copy()
df2['id'] = 'c97'
df = pd.concat([df,df2])
将为与分组键组合相对应的每个子数据帧调用此方法):
groupby
然后在def ttest(x):
g = x.groupby('tow').agg({'daily_avg': list})
r = stats.ttest_ind(g.loc['week','daily_avg'],g.loc['weekend',equal_var=False)
s = {k: getattr(r,k) for k in r._fields}
return pd.Series(s)
调用之后将apply
链接起来就足够了:
groupby
结果大约是:
T = df.groupby('id').apply(ttest)
重构
一旦您了解了这种方法的强大功能,就可以将上述代码重构为可重用的函数,例如:
statistic pvalue
id
c96 -2.128753 0.059126
c97 -2.128753 0.059126
您可以根据需要调整统计测试和DataFrame列。