问题描述
说我有矩阵
> a <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3)
> rownames(a)=c('A','B','C')
> colnames(a)=c('A','C')
> a
A B C
A 1 4 7
B 2 5 8
C 3 6 9
考虑到列将代表实际类,而行将代表预测类,那么我如何提取预测和实际值向量以在confusionMatrix()中使用它们。
解决方法
我想您是指confusionMatrix()
中的caret
。这已经是一个混乱矩阵,您可以使用as.table()将预测传递到函数中,请参阅示例,在其中我们建立了模型并训练/测试数据:
library(caret)
set.seed(111)
idx = sample(1:nrow(iris),100)
trainData = iris[idx,]
testData = iris[-idx,]
mdl = train(Species ~ .,data=trainData,method="rf",trControl=trainControl(method="cv"))
pred = predict(mdl,testData)
actual = testData$Species
带有标签的混淆矩阵:
confusionMatrix(pred,actual)
Confusion Matrix and Statistics
Reference
Prediction setosa versicolor virginica
setosa 20 0 0
versicolor 0 11 2
virginica 0 0 17
带有表的混淆矩阵或矩阵:
a = matrix(table(pred,actual),nrow=3)
colnames(a) = levels(testData$Species)
rownames(a) = levels(testData$Species)
setosa versicolor virginica
setosa 20 0 0
versicolor 0 11 2
virginica 0 0 17
confusionMatrix(as.table(a))
Confusion Matrix and Statistics
setosa versicolor virginica
setosa 20 0 0
versicolor 0 11 2
virginica 0 0 17
Overall Statistics
Accuracy : 0.96
95% CI : (0.8629,0.9951)
No Information Rate : 0.4
P-Value [Acc > NIR] : < 2.2e-16
如果您真的需要矢量,请使用:(对我来说听起来很奇怪)
actual_vector = rep(colnames(a),colSums(a))
pred_vector = rep(rownames(a),rowSums(a))
table(actual_vector) == table(actual)
actual_vector
setosa versicolor virginica
TRUE TRUE TRUE
table(pred_vector) == table(pred)
pred_vector
setosa versicolor virginica
TRUE TRUE TRUE