如何从矩阵中提取预测值和实际值向量,以将它们与R中的confusionMatrix一起使用?

问题描述

我有矩阵

> a <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3)
> rownames(a)=c('A','B','C')
> colnames(a)=c('A','C')
> a
  A B C
A 1 4 7
B 2 5 8
C 3 6 9

考虑到列将代表实际类,而行将代表预测类,那么我如何提取预测和实际值向量以在confusionMatrix()中使用它们。

解决方法

我想您是指confusionMatrix()中的caret。这已经是一个混乱矩阵,您可以使用as.table()将预测传递到函数中,请参阅示例,在其中我们建立了模型并训练/测试数据:

library(caret)
set.seed(111)
idx = sample(1:nrow(iris),100)
trainData = iris[idx,]
testData = iris[-idx,]

mdl = train(Species ~ .,data=trainData,method="rf",trControl=trainControl(method="cv"))
pred = predict(mdl,testData)
actual = testData$Species

带有标签的混淆矩阵:

confusionMatrix(pred,actual)
Confusion Matrix and Statistics

            Reference
Prediction   setosa versicolor virginica
  setosa         20          0         0
  versicolor      0         11         2
  virginica       0          0        17

带有表的混淆矩阵或矩阵:

a = matrix(table(pred,actual),nrow=3)
colnames(a) = levels(testData$Species)
rownames(a) = levels(testData$Species)

           setosa versicolor virginica
setosa         20          0         0
versicolor      0         11         2
virginica       0          0        17

confusionMatrix(as.table(a))

Confusion Matrix and Statistics

           setosa versicolor virginica
setosa         20          0         0
versicolor      0         11         2
virginica       0          0        17

Overall Statistics
                                          
               Accuracy : 0.96            
                 95% CI : (0.8629,0.9951)
    No Information Rate : 0.4             
    P-Value [Acc > NIR] : < 2.2e-16  

如果您真的需要矢量,请使用:(对我来说听起来很奇怪)

actual_vector = rep(colnames(a),colSums(a))
pred_vector = rep(rownames(a),rowSums(a))

table(actual_vector) == table(actual)
actual_vector
    setosa versicolor  virginica 
      TRUE       TRUE       TRUE 

table(pred_vector) == table(pred)
pred_vector
    setosa versicolor  virginica 
      TRUE       TRUE       TRUE