问题描述
我正在使用ray.serve
查看这个StackOverflow线程,以并行保存一个已保存的TF模型:
https://stackoverflow.com/a/62459372
我尝试了以下类似操作:
import ray
from ray import serve; serve.init()
import tensorflow as tf
class A:
def __init__(self):
self.model = tf.constant(1.0) # dummy example
@serve.accept_batch
def __call__(self,*,input_data=None):
print(input_data) # test if method is entered
# do stuff,serve model
if __name__ == '__main__':
serve.create_backend("tf",A,# configure resources
ray_actor_options={"num_cpus": 2},# configure replicas
config={
"num_replicas": 2,"max_batch_size": 24,"batch_wait_timeout": 0.1
}
)
serve.create_endpoint("tf",backend="tf")
handle = serve.get_handle("tf")
args = [1,2,3]
futures = [handle.remote(input_data=i) for i in args]
result = ray.get(futures)
但是,出现以下错误:
TypeError: __call__() takes 1 positional argument but 2 positional arguments (and 1 keyword-only argument) were given
。传递到__call__
的参数有问题。
这似乎是一个简单的错误,如何更改args
数组,以便实际上输入__call__
方法?
解决方法
用于Ray 1.0的API已更新。请参阅迁移指南https://gist.github.com/simon-mo/6d23dfed729457313137aef6cfbc7b54
对于您发布的特定代码示例,可以将其更新为:
import ray
from ray import serve
import tensorflow as tf
class A:
def __init__(self):
self.model = tf.Constant(1.0) # dummy example
@serve.accept_batch
def __call__(self,requests):
for req in requests:
print(req.data) # test if method is entered
# do stuff,serve model
if __name__ == '__main__':
client = serve.start()
client.create_backend("tf",A,# configure resources
ray_actor_options={"num_cpus": 2},# configure replicas
config={
"num_replicas": 2,"max_batch_size": 24,"batch_wait_timeout": 0.1
}
)
client.create_endpoint("tf",backend="tf")
handle = client.get_handle("tf")
args = [1,2,3]
futures = [handle.remote(i) for i in args]
result = ray.get(futures)