问题描述
我已经学习了如何实现SBS算法,现在尝试在python中实现SFS
class SBS():
def __init__(self,estimator,k_features,scoring=accuracy_score,test_size=0.25,random_state=1):
self.scoring = scoring
self.estimator = clone(estimator)
self.k_features = k_features
self.test_size = test_size
self.random_state = random_state
def fit(self,X,y):
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=self.test_size,random_state=self.random_state)
dim = X_train.shape[1]
self.indices_ = tuple(range(dim))
self.subsets_ = [self.indices_]
score = self._calc_score(X_train,y_test,self.indices_)
self.scores_ = [score]
while dim > self.k_features:
scores = []; subsets = []
for p in combinations(self.indices_,r=dim - 1):
score = self._calc_score(X_train,p)
scores.append(score)
subsets.append(p)
best = np.argmax(scores)
self.indices_ = subsets[best]
self.subsets_.append(self.indices_)
dim -= 1
self.scores_.append(scores[best])
self.k_score_ = self.scores_[-1]
return self
def transform(self,X):
return X[:,self.indices_]
def _calc_score(self,X_train,indices):
self.estimator.fit(X_train[:,indices],y_train)
y_pred = self.estimator.predict(X_test[:,indices])
score = self.scoring(y_test,y_pred)
return score
现在,我正在尝试根据上述代码实现SFS算法。
到目前为止:
class SFS():
def __init__(self,k_features=0,verbose=0,random_state=1):
self.estimator = clone(estimator)
self.scoring = scoring
self.test_size = test_size
self.k_features = k_features
self.random_state = random_state
def fit(self,random_state=self.random_state)
dim = X_train.shape[1]
self.indices_ = 0
self.subsets_ = []
score = self._calc_score(X_train,self.indices_)
def transform(self,self.indices_]
def _calc_score(self,indices):
self.estimator.fit(X_train[1:],y_train)
y_pred = self.estimator.predict(X_test[1:])
score = self.scoring(y_test,y_pred)
return score
我了解SFS算法,
- 从空子集开始
- 选择下一个最佳特征(x ^ + = argmax J(Y_k + x)
- 更新Y_ {k + 1} = Y_k + x ^ +,k + = 1
- 返回2直到找到最佳功能
但是用代码编写是另一回事。因为我真的是这个主题的初学者。
有人可以在fit()
方法上为我提供帮助并解释其工作原理吗?
谢谢!
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)