问题描述
我正在研究飞马文档中的用法示例。它可以在协作中正常工作,但使用提取性摘要。有没有办法将此示例转换为抽象示例?示例代码为:
from transformers import PegasusForConditionalGeneration,PegasusTokenizer
import torch
src_text = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."""
]
model_name = 'google/pegasus-xsum'
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device)
batch = tokenizer.prepare_seq2seq_batch(src_text,truncation=True,padding='longest').to(torch_device)
translated = model.generate(**batch)
tgt_text = tokenizer.batch_decode(translated,skip_special_tokens=True)
assert tgt_text[0] == "California's largest electricity provider has turned off power to hundreds of thousands of customers."
感谢您的帮助
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)