问题描述
我正在尝试使用brms::brm()
替换模型中一个参数的先验来拟合贝叶斯模型
purrr::map2()
一个接一个(我对该参数有63个优先级)。由于我上一个问题的answer,我可以list2env()
“理论上”将每个拟合模型另存为全局环境(即我的工作空间)中的不同对象。通过list2env()
,将在所有63次迭代完成后保存对象(brmsfit
)。但是,当我运行整个代码时,总会收到一条错误消息,说Error in scan(con,nlines = 1,sep = ",",quiet = TRUE) : Could not allocate memory (0 Mb) in C function 'R_AllocStringBuffer'
,并且brmsfit
对象没有存储在全局环境中,尽管模型拟合似乎完成了63次,最多我以前的存在。
因此,我想将每个brmsfit
对象保存为R对象,并将其保存为.Rds
或.Rda
文件,在迭代完成后立即保存避免这种内存问题。但是,我应该怎么做才能实现呢?
MWE
请注意,以下命令只是一个“示意图”示例,其中包含我要尝试的公开数据。它可以工作,而不会遇到我上面提到的问题,因为在此示例中,brm()
中的数据和模型更简单,并且先验数量比我要解决的要少得多。
library(lme4)
library(tidyverse)
library(magrittr)
library(brms)
library(cmdstanr)
library(rstan)
## Parallelize the chains using all the cores:
options(mc.cores = parallel::detectCores())
prior_test <- data.frame(
sd = c(0.01,0.01,0.01),mean = c(50,-50,0)
) %>%
mutate(
id = row_number()
)
list2env(
purrr::map2(
prior_test$sd,prior_test$mean,function(psd,pm){
gc()
gc()
cbfm1 <- brm(
Reaction ~ 0 + Intercept + Days + (0 + Intercept + Days|Subject),data = sleepstudy,family = "normal",prior =
c(
prior(normal(0,1),class = b,coef = Intercept),set_prior(
paste0(
"normal(",pm,psd,")"
),class = "b",coef = "Days"
),prior(normal(0,class = sd),prior(lkj(2),class = cor)
),save_pars = save_pars(all = TRUE),backend = "cmdstanr"
)
}
) %>%
setNames(paste0('model',prior_test$id)),.GlobalEnv
)
带有追溯信息的错误消息
Error in scan(con,quiet = TRUE) :
Could not allocate memory (0 Mb) in C function 'R_AllocStringBuffer'
15.
scan(con,quiet = TRUE)
14.
rstan::read_stan_csv(out$output_files())
13.
.fit_model(model,...)
12.
.fun(model = .x1,sdata = .x2,algorithm = .x3,backend = .x4,iter = .x5,warmup = .x6,thin = .x7,chains = .x8,cores = .x9,threads = .x10,inits = .x11,exclude = .x12,control = .x13,future = .x14,seed = .x15,silent = .x16)
11.
eval(expr,envir,...)
10.
eval(expr,...)
9.
eval2(call,envir = args,enclos = parent.frame())
8.
do_call(fit_model,fit_args)
7.
brm(voice ~ 0 + Intercept + agent + patient + REGION1 + REGION2 +
agent:patient + agent:REGION1 + agent:REGION2 + patient:REGION1 +
patient:REGION2 + agent:patient:REGION1 + agent:patient:REGION2 +
(0 + Intercept + agent + patient + agent:patient | subj) + ...
6.
.f(.x[[i]],.y[[i]],...)
5.
map2(R1data$prior_sd,R1data$prior_mean,pm) {
gc()
gc()
brm(voice ~ 0 + Intercept + agent + patient + REGION1 + REGION2 + ...
4.
eval(lhs,parent,parent)
3.
eval(lhs,parent)
2.
map2(R1data$prior_sd,pm) {
gc()
gc()
brm(voice ~ 0 + Intercept + agent + patient + REGION1 + REGION2 + ...
1.
list2env(map2(R1data$prior_sd,pm) {
gc()
gc() ...
解决方法
我认为您可以使用类似以下的内容(这是一个更简单的版本,它避免了数据的来源,变量名,模型规格等)
dir.create("models")
# This function generates a file path,runs the `brm` function and saves the object
# returned by `brm()` as a .rds file
my_fun = function(prior_sd,prior_mean) {
file_name = paste0("models/model_sd_",prior_sd,"_mean_",prior_mean,".rds")
brms_object = brm(...) # pass formula,prior,data,options,etc.
saveRDS(brms_object,file_name) # you can control compression too if you want
}
sds = c(0.01,0.01,0.01)
means = c(50,-50,0)
purrr::walk2(sds,means,my_fun)
您必须确保要使用的数据框存在于全局环境中
,我对the accepted answer中的函数做了一些修改,以便(1)我们可以保留brmsfit
使用assign(...,envir = .GlobalEnv)
和(2)在全局环境中创建对象,我们可以使用-
来避免对象名称,当我们使用负值作为先验均值时,R解释为减法运算符。
data <- data.frame(
prior_sd = prior_sd <- c(0.01,0.01),prior_mean = prior_mean <- c(50,0),id = case_when(
prior_mean == 0 ~ paste0("model_mean_","_sd_",prior_sd),prior_mean < 0 ~ paste0("model_mean_m",abs(prior_mean),prior_mean > 0 ~ paste0("model_mean_p",prior_sd)
)
)
computation = function(prior_mean,prior_sd) {
file_name = case_when(
prior_mean == 0 ~ paste0("path-to-your-directory/model_mean_",".rds"),prior_mean < 0 ~ paste0("path-to-your-directory/model_mean_m",prior_mean > 0 ~ paste0("path-to-your-directory/model_mean_p",".rds")
)
# pass formula,etc.
brms_object = brm(
Reaction ~ 0 + Intercept + Days + (0 + Intercept + Days|Subject),data = sleepstudy,family = "normal",prior =
c(
prior(normal(0,1),class = b,coef = Intercept),set_prior(
paste0(
"normal(",",")"
),class = "b",coef = "Days"
),prior(normal(0,class = sd),prior(lkj(2),class = cor)
),save_pars = save_pars(all = TRUE),backend = "cmdstanr"
)
# save the computation results with object name
assign(
case_when(
prior_mean == 0 ~ paste0("model_mean_",prior_mean < 0 ~ paste0("model_mean_m",prior_mean > 0 ~ paste0("model_mean_p",prior_sd)
),brms_object,envir = .GlobalEnv)
# you can control compression too if you want
saveRDS(brms_object,file_name)
}
purrr::walk2(data$prior_mean,data$prior_sd,computation)