10个交叉折叠的混淆矩阵-如何做熊猫数据框df

问题描述

我正在尝试为任何模型(随机森林,决策树,朴素贝叶斯等)获得10倍混淆矩阵 如果我运行如下所示的普通模型,则可以正常获取每个混淆矩阵:


    from sklearn.model_selection import train_test_split
    from sklearn import model_selection
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import roc_auc_score
    
    # implementing train-test-split
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.34,random_state=66)
    
    # random forest model creation
    rfc = RandomForestClassifier(n_estimators=200,random_state=39,max_depth=4)
    rfc.fit(X_train,y_train)
    # predictions
    rfc_predict = rfc.predict(X_test)
    
    print("=== Confusion Matrix ===")
    print(confusion_matrix(y_test,rfc_predict))
    print('\n')
    print("=== Classification Report ===")
    print(classification_report(y_test,rfc_predict))

出[1]:


    === Confusion Matrix ===
    [[16243  1011]
     [  827 16457]]
    
    
    === Classification Report ===
                  precision    recall  f1-score   support
    
               0       0.95      0.94      0.95     17254
               1       0.94      0.95      0.95     17284
    
        accuracy                           0.95     34538
       macro avg       0.95      0.95      0.95     34538
    weighted avg       0.95      0.95      0.95     34538

但是,现在我想得到10个cv折叠的混淆矩阵。我应该如何做或做。我试过了但是没用。


    # from sklearn import cross_validation
    from sklearn.model_selection import cross_validate
    kfold = KFold(n_splits=10)
    
    conf_matrix_list_of_arrays = []
    kf = cross_validate(rfc,X,cv=kfold)
    print(kf)
    for train_index,test_index in kf:
    
        X_train,X_test = X[train_index],X[test_index]
        y_train,y_test = y[train_index],y[test_index]
    
        rfc.fit(X_train,y_train)
        conf_matrix = confusion_matrix(y_test,rfc.predict(X_test))
        conf_matrix_list_of_arrays.append(conf_matrix)

数据集包含此数据帧dp

Temperature Series  Parallel    Shading Number of cells Voltage(V)  Current(I)  I/V     Solar Panel Cell Shade Percentage   IsShade
30          10      1           2       10              1.11        2.19        1.97    1985        1   20.0                1
27          5       2          10       10              2.33        4.16        1.79    1517        3   100.0   1
30  5   2   7   10  2.01    4.34    2.16    3532    1   70.0    1
40  2   4   3   8   1.13    -20.87  -18.47  6180    1   37.5    1
45  5   2   4   10  1.13    6.52    5.77    8812    3   40.0    1

解决方法

对我来说,这里的问题在于kf的错误包装。实际上,cross_validate()返回的数组字典默认具有test_scores和fit / score时间。

您可以改为使用split()实例的Kfold方法,该方法可以帮助您生成索引以将数据分为训练和测试(验证)集。因此,通过更改为

for train_index,test_index in kfold.split(X_train,y_train):

您应该得到想要的东西。

,

help page for cross_validate不会返回用于交叉验证的索引。您需要使用示例数据集从(分层)KFold访问索引:

from sklearn import datasets,linear_model
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import cross_val_predict
from sklearn.ensemble import RandomForestClassifier

data = datasets.load_breast_cancer()
X = data.data
y = data.target

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.34,random_state=66)

skf = StratifiedKFold(n_splits=10,random_state=111,shuffle=True)

skf.split(X_train,y_train)

rfc = RandomForestClassifier(n_estimators=200,random_state=39,max_depth=4)
y_pred = cross_val_predict(rfc,X_train,cv=skf)

我们应用cross_val_predict来获得所有预测:

y_pred = cross_val_predict(rfc,X,cv=skf)

然后使用索引将该y_pred拆分为每个混淆矩阵:

mats = []
for train_index,test_index in skf.split(X_train,y_train):
    mats.append(confusion_matrix(y_train[test_index],y_pred[test_index]))
    

看起来像这样:

mats[:3]

[array([[13,2],[ 0,23]]),array([[14,1],[ 1,22]]),23]])]

检查矩阵列表和总和的和是否相同:

np.add.reduce(mats)

array([[130,14],[  6,225]])

confusion_matrix(y_train,y_pred)

array([[130,225]])