神经网络的输出不符合测试数据

问题描述

我用train_data训练神经网络。标签的类别为1或2。

pred = pd.Series(model.predict(X_test_tok).tolist())

这就是我准备预测的方式。所以我得到:

0       [1.0]
1       [1.0]
2       [1.0]
3       [1.0]
4       [1.0]
        ...  
2380    [1.0]
2381    [1.0]
2382    [1.0]
2383    [1.0]
2384    [1.0]
Length: 2385,dtype: object

我的测试数据如下:

626     1
4677    1
1580    2
3749    1
3280    1
       ..
5321    1
1232    1
5674    1
2863    2
3656    1
Name: Zielvar,Length: 2385,dtype: object

因此混淆矩阵的代码将失败:

print(metrics.confusion_matrix(y_test,pred))

该错误包括以下内容:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-19-a22a78d1c59c> in <module>
----> 1 print(metrics.confusion_matrix(y_test,pred))

~\.conda\envs\python36\lib\site-packages\sklearn\metrics\_classification.py in confusion_matrix(y_true,y_pred,labels,sample_weight,normalize)
    266 
    267     """
--> 268     y_type,y_true,y_pred = _check_targets(y_true,y_pred)
    269     if y_type not in ("binary","multiclass"):
    270         raise ValueError("%s is not supported" % y_type)

~\.conda\envs\python36\lib\site-packages\sklearn\metrics\_classification.py in _check_targets(y_true,y_pred)
     80     check_consistent_length(y_true,y_pred)
     81     type_true = type_of_target(y_true)
---> 82     type_pred = type_of_target(y_pred)
     83 
     84     y_type = {type_true,type_pred}

~\.conda\envs\python36\lib\site-packages\sklearn\utils\multiclass.py in type_of_target(y)
    258         if (not hasattr(y[0],'__array__') and isinstance(y[0],Sequence)
    259                 and not isinstance(y[0],str)):
--> 260             raise ValueError('You appear to be using a legacy multi-label data'
    261                              ' representation. Sequence of sequences are no'
    262                              ' longer supported; use a binary array or sparse'

ValueError: You appear to be using a legacy multi-label data representation. Sequence of sequences are no longer supported; use a binary array or sparse matrix instead - the MultiLabelBinarizer transformer can convert to this format.

我该如何解决这个问题?

谢谢!

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)