问题描述
我有以下两个数据帧
df1 <- as.data.frame(matrix(runif(50),nrow = 10,byrow = TRUE))
colnames(df1) <- c("x1","x2","x3","x4","x5")
df2 <- as.data.frame(matrix(runif(100),nrow = 20,byrow = TRUE))
colnames(df2) <- c("x1","x5")
我想测试2个dfs的x_j列的平均值是否相同,对于j = 1,...,5,记录测试统计量和p值。
t.test(df1$x1,df2$x1)$statistic
t.test(df1$x1,df2$x1)$p.value
apply()似乎只接受一个df作为输入?在j上循环以上两行的最佳方法是什么?
谢谢!
解决方法
apply
,lapply
,vapply
和sapply
都在单个对象上循环。如果您有m
个用户,则需要mapply
或Map
:
mapply(function(x,y) t.test(x,y)[c("statistic","p.value")],df1,df2)
# x1 x2 x3 x4 x5
#statistic 0.6816886 -1.408304 -0.2598513 -0.890468 -1.097354
#p.value 0.5028386 0.1721202 0.7982655 0.3825847 0.2851621
这假设df1
和df2
的列顺序相同。
您可以在R中使用常规的for
循环通过遍历列名来实现此目的。
cols <- c("x1","x2","x3","x4","x5")
df1 <- as.data.frame(matrix(runif(50),nrow = 10,byrow = TRUE))
colnames(df1) <- cols
df2 <- as.data.frame(matrix(runif(100),nrow = 20,byrow = TRUE))
colnames(df2) <- cols
for (col in cols) {
message(paste("Testing column",col,collapse = " "))
print(paste("t-statistic: ",t.test(df1[col],df2[col])$statistic[["t"]]))
print(paste("p-value: ",df2[col])$p.value))
}
#> Testing column x1
#> [1] "t-statistic: 0.419581290015361"
#> [1] "p-value: 0.68029340912263"
#> Testing column x2
#> [1] "t-statistic: -0.343435717107623"
#> [1] "p-value: 0.7361266387073"
#> Testing column x3
#> [1] "t-statistic: 0.248037735890824"
#> [1] "p-value: 0.807107717907307"
#> Testing column x4
#> [1] "t-statistic: 0.992363174130968"
#> [1] "p-value: 0.333989277352541"
#> Testing column x5
#> [1] "t-statistic: 2.06600413500528"
#> [1] "p-value: 0.0527652252424411"
由reprex package(v0.3.0)于2020-11-02创建