PLS位置参数

问题描述

我正在尝试使用5个代理进行PLS回归。

date    pdnd    cefd    ripo    nipo    s
0   1965-07-31  31.123778   19.274681   6.244944    10.333333   0.153472
1   1965-08-31  30.705603   19.479926   5.968817    10.083333   0.137691
2   1965-09-30  30.157715   18.845566   5.289247    10.833333   0.138454
3   1965-10-31  30.120378   17.532712   5.667742    11.083333   0.137525
4   1965-11-30  30.396602   16.818206   5.719355    12.083333   0.125939
5   1965-12-31  30.573540   16.331693   4.922680    12.166667   0.116760
6   1966-01-31  30.276061   15.787432   4.932258    12.083333   0.125947

代码

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import scale 

from sklearn import model_selection

from sklearn.decomposition import PCA

from sklearn.linear_model import LinearRegression

from sklearn.cross_decomposition import PLSRegression,PLSSVD

from sklearn.metrics import mean_squared_error

pdnd=data.loc[:,'pdnd']

cefd=data.loc[:,'cefd']

ripo=data.loc[:,'ripo']

nipo=data.loc[:,'nipo']

s=data.loc[:,'s']

pls2 = PLSRegression(n_components = 5)

pls2.fit(pdnd,cefd,ripo,nipo,s)

输出

TypeError: fit() takes 3 positional arguments but 6 were given

所以我很好奇如何包含所有代理并得出答案?

预先感谢

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)