如何使Python LightGBM代码接受列表

问题描述

我正在使用以下代码:

import numpy as np

from sklearn.model_selection import train_test_split

import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import mean_squared_error,roc_auc_score,precision_score
pd.options.display.max_columns = 999
import lightgbm as lgb

def load_csv(filepath):
    data =  []
    col = []
    checkcol = False
    with open(filepath) as f:
        for val in f.readlines():
            val = val.replace("\n","")
            val = val.split(',')
            if checkcol is False:
                col = val
                checkcol = True
            else:
                data.append(val)
    df = pd.DataFrame(data=data,columns=col)
    return df

heart=load_csv(r'C:\Users\PC\Documents\Essay\heart.csv')

df=heart[['chol','cp']]
Y=heart['sex']

sc=StandardScaler()
sc.fit(df)
X=pd.DataFrame(sc.fit_transform(df))

X_train,X_test,y_train,y_test=train_test_split(X,Y,test_size=0.3,random_state=0)


d_train=lgb.Dataset(X_train,label=y_train)

params={}
params['learning_rate']=0.03
params['boosting_type']='gbdt' #GradientBoostingDecisionTree
params['objective']='binary' #Binary target feature
params['metric']='binary_logloss' #metric for binary classification
params['max_depth']=10


clf=lgb.train(params,d_train,100)

仅获取错误消息:

ValueError: Series.dtypes must be int,float or bool

我知道这是我选择Y的原因,但是我也尝试过使用数组和嵌套列表,但仍然失败。

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)