如何在Keras中实现分层模型?

问题描述

我正在尝试重建https://arxiv.org/abs/1709.04250中的模型。

作者将文本分解为发音(像句子一样思考),然后使用双向LSTM组合这些发音,然后再次使用双向LSTM,这一次是在一系列发音表示上,并通过使用CRF层来预测与每个话语相关的标签

这是模型架构的可视化: enter image description here

这是我的尝试,在Keras中实现,并使用了https://github.com/keras-team/keras-contrib中的CRF层:

embedding_layer = Embedding(len(word2id) + 1,EMbedDING_DIM,weights=[embedding_matrix],input_length=max_nr_words,trainable=False)
crf = CRF(n_tags,sparse_target=True)


utterance_encoder = Sequential()
utterance_encoder.add(embedding_layer)
utterance_encoder.add(Bidirectional(LSTM(256,return_sequences=True)))
#This is not the pooling used in the paper but should only affect performance:
utterance_encoder.add(AveragePooling1D(max_nr_words))
utterance_encoder.add(Flatten())
utterance_encoder.summary()


model = Sequential()
model.add(Timedistributed(utterance_encoder,input_shape = (max_nr_utterances,max_nr_words)))
model.add(Bidirectional(LSTM(256,return_sequences = True)))
model.add(crf)
model.summary()

model.compile(optimizer="adam",loss='categorical_crossentropy',metrics = [crf_viterbi_accuracy])
model.fit(X,y,batch_size = 1)

# Here,X is of shape (51,3391,431) (51 documents featuring (max) 3391 utterances of (max) 431 words (represented by integer IDs)
# y is of shape (51,52) (51 documents featuring 3391 utterances each corresponding to one of 52 labels)

不幸的是,这失败并显示以下错误

    ---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-3-9bb38cc64dfb> in <module>
     22 #model.compile(optimizer="adam",metrics = ["acc"])
     23 
---> 24 model.fit(X,batch_size = 1)

~/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self,*args,**kwargs)
    106   def _method_wrapper(self,**kwargs):
    107     if not self._in_multi_worker_mode():  # pylint: disable=protected-access
--> 108       return method(self,**kwargs)
    109 
    110     # Running inside `run_distribute_coordinator` already.

~/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py in fit(self,x,batch_size,epochs,verbose,callbacks,validation_split,validation_data,shuffle,class_weight,sample_weight,initial_epoch,steps_per_epoch,validation_steps,validation_batch_size,validation_freq,max_queue_size,workers,use_multiprocessing)
   1096                 batch_size=batch_size):
   1097               callbacks.on_train_batch_begin(step)
-> 1098               tmp_logs = train_function(iterator)
   1099               if data_handler.should_sync:
   1100                 context.async_wait()

~/.local/lib/python3.6/site-packages/tensorflow/python/eager/def_function.py in __call__(self,**kwds)
    778       else:
    779         compiler = "nonXla"
--> 780         result = self._call(*args,**kwds)
    781 
    782       new_tracing_count = self._get_tracing_count()

~/.local/lib/python3.6/site-packages/tensorflow/python/eager/def_function.py in _call(self,**kwds)
    821       # This is the first call of __call__,so we have to initialize.
    822       initializers = []
--> 823       self._initialize(args,kwds,add_initializers_to=initializers)
    824     finally:
    825       # At this point we kNow that the initialization is complete (or less

~/.local/lib/python3.6/site-packages/tensorflow/python/eager/def_function.py in _initialize(self,args,add_initializers_to)
    695     self._concrete_stateful_fn = (
    696         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
--> 697             *args,**kwds))
    698 
    699     def invalid_creator_scope(*unused_args,**unused_kwds):

~/.local/lib/python3.6/site-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self,**kwargs)
   2853       args,kwargs = None,None
   2854     with self._lock:
-> 2855       graph_function,_,_ = self._maybe_define_function(args,kwargs)
   2856     return graph_function
   2857 

~/.local/lib/python3.6/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self,kwargs)
   3211 
   3212       self._function_cache.missed.add(call_context_key)
-> 3213       graph_function = self._create_graph_function(args,kwargs)
   3214       self._function_cache.primary[cache_key] = graph_function
   3215       return graph_function,kwargs

~/.local/lib/python3.6/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self,kwargs,override_flat_arg_shapes)
   3073             arg_names=arg_names,3074             override_flat_arg_shapes=override_flat_arg_shapes,-> 3075             capture_by_value=self._capture_by_value),3076         self._function_attributes,3077         function_spec=self.function_spec,~/.local/lib/python3.6/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name,python_func,signature,func_graph,autograph,autograph_options,add_control_dependencies,arg_names,op_return_value,collections,capture_by_value,override_flat_arg_shapes)
    984         _,original_func = tf_decorator.unwrap(python_func)
    985 
--> 986       func_outputs = python_func(*func_args,**func_kwargs)
    987 
    988       # invariant: `func_outputs` contains only Tensors,CompositeTensors,~/.local/lib/python3.6/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args,**kwds)
    598         # __wrapped__ allows AutoGraph to swap in a converted function. We give
    599         # the function a weak reference to itself to avoid a reference cycle.
--> 600         return weak_wrapped_fn().__wrapped__(*args,**kwds)
    601     weak_wrapped_fn = weakref.ref(wrapped_fn)
    602 

~/.local/lib/python3.6/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args,**kwargs)
    971           except Exception as e:  # pylint:disable=broad-except
    972             if hasattr(e,"ag_error_Metadata"):
--> 973               raise e.ag_error_Metadata.to_exception(e)
    974             else:
    975               raise

ValueError: in user code:

    /home/jonas/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py:806 train_function  *
        return step_function(self,iterator)
    /home/jonas/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py:796 step_function  **
        outputs = model.distribute_strategy.run(run_step,args=(data,))
    /home/jonas/.local/lib/python3.6/site-packages/tensorflow/python/distribute/distribute_lib.py:1211 run
        return self._extended.call_for_each_replica(fn,args=args,kwargs=kwargs)
    /home/jonas/.local/lib/python3.6/site-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica
        return self._call_for_each_replica(fn,kwargs)
    /home/jonas/.local/lib/python3.6/site-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica
        return fn(*args,**kwargs)
    /home/jonas/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py:789 run_step  **
        outputs = model.train_step(data)
    /home/jonas/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py:757 train_step
        self.trainable_variables)
    /home/jonas/.local/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py:2737 _minimize
        trainable_variables))
    /home/jonas/.local/lib/python3.6/site-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:562 _aggregate_gradients
        filtered_grads_and_vars = _filter_grads(grads_and_vars)
    /home/jonas/.local/lib/python3.6/site-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:1271 _filter_grads
        ([v.name for _,v in grads_and_vars],))

    ValueError: No gradients provided for any variable: ['bidirectional_2/forward_lstm_2/lstm_cell_7/kernel:0','bidirectional_2/forward_lstm_2/lstm_cell_7/recurrent_kernel:0','bidirectional_2/forward_lstm_2/lstm_cell_7/bias:0','bidirectional_2/backward_lstm_2/lstm_cell_8/kernel:0','bidirectional_2/backward_lstm_2/lstm_cell_8/recurrent_kernel:0','bidirectional_2/backward_lstm_2/lstm_cell_8/bias:0','bidirectional_3/forward_lstm_3/lstm_cell_10/kernel:0','bidirectional_3/forward_lstm_3/lstm_cell_10/recurrent_kernel:0','bidirectional_3/forward_lstm_3/lstm_cell_10/bias:0','bidirectional_3/backward_lstm_3/lstm_cell_11/kernel:0','bidirectional_3/backward_lstm_3/lstm_cell_11/recurrent_kernel:0','bidirectional_3/backward_lstm_3/lstm_cell_11/bias:0','crf_1/kernel:0','crf_1/chain_kernel:0','crf_1/bias:0','crf_1/left_boundary:0','crf_1/right_boundary:0'].

模型摘要在有帮助的情况下:

   Layer (type)                 Output Shape              Param #   
    =================================================================
    embedding_1 (Embedding)      (None,431,300)          2867400   
    _________________________________________________________________
    bidirectional_2 (Bidirection (None,512)          1140736   
    _________________________________________________________________
    average_pooling1d_1 (Average (None,1,512)            0         
    _________________________________________________________________
    flatten_1 (Flatten)          (None,512)               0         
    =================================================================
    Total params: 4,008,136
    Trainable params: 1,140,736
    Non-trainable params: 2,867,400
    _________________________________________________________________
    Model: "sequential_3"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    time_distributed_1 (Timedist (None,512)         4008136   
    _________________________________________________________________
    bidirectional_3 (Bidirection (None,512)         1574912   
    _________________________________________________________________
    crf_1 (CRF)                  (None,52)          29484     
    =================================================================
    Total params: 5,612,532
    Trainable params: 2,745,132
    Non-trainable params: 2,400
    ________________________________________________________________

如果我将CRF层替换为密集层(仅用于测试),则最终会占用大量内存,并且我无法运行任何batch_sizes> 1(但这是一个单独的问题)。 >

任何建议/其他实现,甚至必要时在PyTorch / Tensorflow中也将受到赞赏。

谢谢

编辑: https://github.com/YanWenqiang/HBLSTM-CRF的特点是原始作者对此模型进行了张量流实现,但并未得到维护,对我来说很麻烦。

解决方法

我最终使用了https://github.com/xuxingya/tf2crf,它得到维护并可以与tf2一起使用。