具有自定义图层的自定义模型的Keras负载模型-变压器文档示例

问题描述

我正在运行以下示例:

https://keras.io/examples/nlp/text_classification_with_transformer/

我已经按照描述创建并训练了一个模型,并且效果很好:

inputs = layers.Input(shape=(maxlen,))
embedding_layer = TokenAndPositionEmbedding(maxlen,vocab_size,embed_dim)
x = embedding_layer(inputs)
transformer_block = TransformerBlock(embed_dim,num_heads,ff_dim)
x = transformer_block(x,training=True)
x = layers.GlobalAveragePooling1D()(x)
x = layers.Dropout(0.1)(x)
x = layers.Dense(20,activation="relu")(x)
x = layers.Dropout(0.1)(x)
outputs = layers.Dense(2,activation="softmax")(x)

model = keras.Model(inputs=inputs,outputs=outputs)


"""
## Train and Evaluate
"""

model.compile("adam","sparse_categorical_crossentropy",metrics=["accuracy"])
history = model.fit(
    x_train,y_train,batch_size=1024,epochs=1,validation_data=(x_val,y_val)
)

model.save('SPAM.h5')

如何在Keras中正确保存和加载此类自定义模型

我尝试过

 best_model=tf.keras.models.load_model('SPAM.h5')
 ValueError: UnkNown layer: TokenAndPositionEmbedding

,但是模型似乎缺少自定义图层。但是以下内容也不起作用

best_model=tf.keras.models.load_model('SPAM.h5',custom_objects={"TokenAndPositionEmbedding": TokenAndPositionEmbedding()})
 
TypeError: __init__() missing 3 required positional arguments:
 'maxlen','vocab_size',and 'embed_dim'

通过类也无法解决

best_model=tf.keras.models.load_model('SPAM.h5',custom_objects={"TokenAndPositionEmbedding": TokenAndPositionEmbedding})
 TypeError: __init__() got an unexpected keyword argument 'name'



 best_model=tf.keras.models.load_model('SPAM.h5',{"TokenAndPositionEmbedding":
TokenAndPositionEmbedding,'TransformerBlock':TransformerBlock,'MultiHeadSelfAttention':MultiHeadSelfAttention})

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)