问题描述
因此,我正在从csv文件中收集来自S&P 500的数据。我的问题是如何创建一个包含500列并包含所有价格的大型数据框。该代码当前为:
import pandas as pd
import pandas_datareader as web
import datetime as dt
from datetime import date
import numpy as np
def get_data():
start = dt.datetime(2020,5,30)
end = dt.datetime.Now()
csv_file = pd.read_csv(os.path.expanduser("/Users/benitocano/Downloads/copyOfSandP500.csv"),delimiter = ',')
tickers = pd.read_csv("/Users/benitocano/Downloads/copyOfSandP500.csv",delimiter=',',names = ['Symbol','Name','Sector'])
for i in tickers['Symbol'][:5]:
df = web.DataReader(i,'yahoo',start,end)
df.drop(['High','Low','Open','Close','Volume'],axis=1,inplace=True)
get_data()
因此,如代码现在所显示的,它只是要创建500个单独的数据帧,所以我想问如何将其变成一个大数据帧。谢谢! 编辑: CSV文件链接为: https://datahub.io/core/s-and-p-500-companies
我已经尝试了以上代码:
for stock in data:
series = pd.Series(stock['Adj Close'])
df = pd.DataFrame()
df[ticker] = series
print(df)
尽管输出只有一列,如下所示:
ADM
Date
2020-06-01 38.574604
2020-06-02 39.348278
2020-06-03 40.181465
2020-06-04 40.806358
2020-06-05 42.175167
... ...
2020-11-05 47.910000
2020-11-06 48.270000
2020-11-09 49.290001
2020-11-10 50.150002
2020-11-11 50.090000
为什么只打印一列,而不打印其余列?