问题描述
我正在尝试以整数方式解析二进制文件,以检查整数值是否满足特定条件,但循环非常慢。
此外,我发现 memory-mapped file
是将文件快速读入内存的最快速度,因此我使用了以下基于 Boost
的代码:
unsigned long long int get_file_size(const char *file_path) {
const filesystem::path file{file_path};
const auto generic_path = file.generic_path();
return filesystem::file_size(generic_path);
}
boost::iostreams::mapped_file_source read_bytes(const char *file_path,const unsigned long long int offset,const unsigned long long int length) {
boost::iostreams::mapped_file_params parameters;
parameters.path = file_path;
parameters.length = static_cast<size_t>(length);
parameters.flags = boost::iostreams::mapped_file::mapmode::readonly;
parameters.offset = static_cast<boost::iostreams::stream_offset>(offset);
boost::iostreams::mapped_file_source file;
file.open(parameters);
return file;
}
boost::iostreams::mapped_file_source read_bytes(const char *file_path) {
const auto file_size = get_file_size(file_path);
const auto mapped_file_source = read_bytes(file_path,file_size);
return mapped_file_source;
}
我的测试用例大致如下:
inline auto test_parsing_binary_file_performance() {
const auto start_time = get_time();
const std::filesystem::path input_file_path = "...";
const auto mapped_file_source = read_bytes(input_file_path.string().c_str());
const auto file_buffer = mapped_file_source.data();
const auto file_buffer_size = mapped_file_source.size();
LOG_S(INFO) << "File buffer size: " << file_buffer_size;
auto printed_lap = (long) (file_buffer_size / (double) 1000);
printed_lap = round_to_nearest_multiple(printed_lap,sizeof(int));
LOG_S(INFO) << "Printed lap: " << printed_lap;
std::vector<int> values;
values.reserve(file_buffer_size / sizeof(int)); // Pre-allocate a large enough vector
// Iterate over every integer
for (auto file_buffer_index = 0; file_buffer_index < file_buffer_size; file_buffer_index += sizeof(int)) {
const auto value = *(int *) &file_buffer[file_buffer_index];
if (value >= 0x30000000 && value < 0x49000000 - sizeof(int) + 1) {
values.push_back(value);
}
if (file_buffer_index % printed_lap == 0) {
LOG_S(INFO) << std::setprecision(4) << file_buffer_index / (double) file_buffer_size * 100 << "%";
}
}
LOG_S(INFO) << "Values found count: " << values.size();
print_time_taken(start_time,false,"Parsing binary file");
}
memory-mapped file
读取几乎按预期立即完成,但尽管硬件出色(SSD
等),但在我的机器上按整数迭代它太慢了:
2020-12-20 13:04:35.124 ( 0.019s) [main thread ]Tests.hpp:387 INFO| File buffer size: 419430400
2020-12-20 13:04:35.124 ( 0.019s) [main thread ]Tests.hpp:390 INFO| Printed lap: 419432
2020-12-20 13:04:35.135 ( 0.029s) [main thread ]Tests.hpp:405 INFO| 0%
2020-12-20 13:04:35.171 ( 0.065s) [main thread ]Tests.hpp:405 INFO| 0.1%
2020-12-20 13:04:35.196 ( 0.091s) [main thread ]Tests.hpp:405 INFO| 0.2%
2020-12-20 13:04:35.216 ( 0.111s) [main thread ]Tests.hpp:405 INFO| 0.3%
2020-12-20 13:04:35.241 ( 0.136s) [main thread ]Tests.hpp:405 INFO| 0.4%
2020-12-20 13:04:35.272 ( 0.167s) [main thread ]Tests.hpp:405 INFO| 0.5%
2020-12-20 13:04:35.293 ( 0.188s) [main thread ]Tests.hpp:405 INFO| 0.6%
2020-12-20 13:04:35.314 ( 0.209s) [main thread ]Tests.hpp:405 INFO| 0.7%
2020-12-20 13:04:35.343 ( 0.237s) [main thread ]Tests.hpp:405 INFO| 0.8%
2020-12-20 13:04:35.366 ( 0.261s) [main thread ]Tests.hpp:405 INFO| 0.9%
2020-12-20 13:04:35.399 ( 0.293s) [main thread ]Tests.hpp:405 INFO| 1%
2020-12-20 13:04:35.421 ( 0.315s) [main thread ]Tests.hpp:405 INFO| 1.1%
2020-12-20 13:04:35.447 ( 0.341s) [main thread ]Tests.hpp:405 INFO| 1.2%
2020-12-20 13:04:35.468 ( 0.362s) [main thread ]Tests.hpp:405 INFO| 1.3%
2020-12-20 13:04:35.487 ( 0.382s) [main thread ]Tests.hpp:405 INFO| 1.4%
2020-12-20 13:04:35.520 ( 0.414s) [main thread ]Tests.hpp:405 INFO| 1.5%
2020-12-20 13:04:35.540 ( 0.435s) [main thread ]Tests.hpp:405 INFO| 1.6%
2020-12-20 13:04:35.564 ( 0.458s) [main thread ]Tests.hpp:405 INFO| 1.7%
2020-12-20 13:04:35.586 ( 0.480s) [main thread ]Tests.hpp:405 INFO| 1.8%
2020-12-20 13:04:35.608 ( 0.503s) [main thread ]Tests.hpp:405 INFO| 1.9%
2020-12-20 13:04:35.636 ( 0.531s) [main thread ]Tests.hpp:405 INFO| 2%
2020-12-20 13:04:35.658 ( 0.552s) [main thread ]Tests.hpp:405 INFO| 2.1%
2020-12-20 13:04:35.679 ( 0.574s) [main thread ]Tests.hpp:405 INFO| 2.2%
2020-12-20 13:04:35.702 ( 0.597s) [main thread ]Tests.hpp:405 INFO| 2.3%
2020-12-20 13:04:35.727 ( 0.622s) [main thread ]Tests.hpp:405 INFO| 2.4%
2020-12-20 13:04:35.769 ( 0.664s) [main thread ]Tests.hpp:405 INFO| 2.5%
2020-12-20 13:04:35.802 ( 0.697s) [main thread ]Tests.hpp:405 INFO| 2.6%
2020-12-20 13:04:35.831 ( 0.726s) [main thread ]Tests.hpp:405 INFO| 2.7%
2020-12-20 13:04:35.860 ( 0.754s) [main thread ]Tests.hpp:405 INFO| 2.8%
2020-12-20 13:04:35.887 ( 0.781s) [main thread ]Tests.hpp:405 INFO| 2.9%
2020-12-20 13:04:35.924 ( 0.818s) [main thread ]Tests.hpp:405 INFO| 3%
2020-12-20 13:04:35.956 ( 0.850s) [main thread ]Tests.hpp:405 INFO| 3.1%
2020-12-20 13:04:35.998 ( 0.893s) [main thread ]Tests.hpp:405 INFO| 3.2%
2020-12-20 13:04:36.033 ( 0.928s) [main thread ]Tests.hpp:405 INFO| 3.3%
2020-12-20 13:04:36.060 ( 0.955s) [main thread ]Tests.hpp:405 INFO| 3.4%
2020-12-20 13:04:36.102 ( 0.997s) [main thread ]Tests.hpp:405 INFO| 3.5%
2020-12-20 13:04:36.132 ( 1.026s) [main thread ]Tests.hpp:405 INFO| 3.6%
...
2020-12-20 13:05:03.456 ( 28.351s) [main thread ]Tests.hpp:410 INFO| Values found count: 10650389
2020-12-20 13:05:03.456 ( 28.351s) [main thread ] benchmark.cpp:31 INFO| Parsing binary file took 28.341 second(s)
解析这些 419 MB
总是需要大约 28 - 70 秒。即使在 Release
模式下编译也无济于事。有什么办法可以减少这个时间吗?我正在执行的操作似乎没有那么低效。
请注意,我正在使用 Linux 64-bit
编译 GCC 10
。
编辑:
正如评论中所建议的,将 memory-mapped file
与 advise()
一起使用也无助于性能:
boost::interprocess::file_mapping file_mapping(input_file_path.string().data(),boost::interprocess::read_only);
boost::interprocess::mapped_region mapped_region(file_mapping,boost::interprocess::read_only);
mapped_region.advise(boost::interprocess::mapped_region::advice_sequential);
const auto file_buffer = (char *) mapped_region.get_address();
const auto file_buffer_size = mapped_region.get_size();
...
迄今为止通过考虑评论/答案而获得的经验教训:
- 使用
advise(boost::interprocess::mapped_region::advice_sequential)
没有帮助 - 不调用
reserve()
或以完全正确的大小调用它可以使性能翻倍 - 直接在
int *
上迭代比在char *
上迭代要慢一些 - 使用
std::set
收集结果比使用std::vector
慢一些 - 进度日志对性能来说无关紧要
解决方法
正如 xanatos
View view = LayoutInflater.from(context).inflate(R.layout.row_users,(android.view.ViewGroup) ViewGroup,false);
所暗示的那样,它们在性能上具有欺骗性,因为它们并没有真正将整个文件瞬间读入内存。在处理过程中,页面丢失导致多次磁盘访问,严重降低了性能。
在这种情况下,先将整个文件读入内存,然后遍历内存,效率更高:
String userImage = usersList.get(position).getImage();
现在性能更容易接受,总共大约 for (DataSnapshot ds: dataSnapshot.getChildren())
。
这让我想起了大约 40 年前我第一次遇到缓慢。由衡量进度的百分比条引起。注释掉那部分并再次测量。 还要测量容量储备,并检查所需的实际容量 - 如果是 1%,那么您就是在浪费空间和时间。
-
unsigned long long
可能很昂贵。unsignedlong
还不够吗? - 取模,除法可能会额外花费。
- 进度记录可能很慢,最好是一个单独的线程,然后检查 刷新(违反直觉)是否可能不会更快。
所以:
const auto pct_factor = file_buffer_size == 0 ? 0.0 : 100 / (double)file_buffer_size;
values.reserve(file_buffer_size / sizeof(int));
for (auto file_buffer_index = 0,long pct_countdown = 0; file_buffer_index < file_buffer_size; file_buffer_index += sizeof(int)) {
const auto value = *(int *) &file_buffer[file_buffer_index];
if (value >= 0x30000000 && value < 0x49000000 - sizeof(int) + 1) {
values.push_back(value);
}
if (pct_countdown-- < 0) {
pct_countdown = printed_lap;
const auto pct = file_buffer_index * pct_factor;
LOG_S(INFO) << std::setprecision(4) << pct << "%";
}
}
- 整数百分比会更好。有点舍弃精度。
- 批量数据
values
- 是否需要这样的数据。一套就足够了。
我承认我对 *(int *)
有疑问。使用 int*
指针并增加它似乎也更直接。