是否有一种基于规则的 spacy 匹配方法来匹配模式?

问题描述

我想使用基于规则的匹配 我有一个像 POS 的每个单词一样的文本:

 text1= "it_PRON is_AUX a_DET beautiful_ADJ  apple_NOUN"

 text2= "it_PRON is_AUX a_DET beautiful_ADJ and_CCONJ big_ADJ apple_NOUN"

所以我想创建一个基于规则的匹配,如果我们有一个 ADJ 后跟名词(NOUN)或一个 ADJ 后跟(PUNCT 或 CCONJ)后跟一个 ADJ 后跟一个名词(NOUN)

所以,我想输出

text1 = [beautiful_ADJ  apple_NOUN]
text2= [beautiful_ADJ and_CCONJ big_ADJ apple_NOUN]

我试图这样做,但我没有找到允许这样做的正确模式:

from spacy.matcher import Matcher,PhraseMatcher
import spacy
import spacy
from spacy.matcher import Matcher

matchers = {"first_processing": Matcher(nlp.vocab,validate=True)}
nlp = spacy.load("en_core_web_sm")
pattern = [{},{},{}]  #################################### we must find the right pattern
matchers["first_processing"].add("process_1",None,pattern)

nlp = spacy.load("en_core_web_sm")
doc = nlp("it_PRON is_AUX a_DET beautiful_ADJ and_CCONJ big_ADJ apple_NOUN")
a=matcher(doc)
for match_id,start,end in a:
    text = doc[start:end].text
    print(text)

解决方法

我不知道 spacy 但这里有一个 re(标准库模块)解决方案:

import re

REGEX = re.compile(r"\w+_ADJ +(?:\w+(?:_CCONJ|_PUNCT) +\w+_ADJ +)*\w+_NOUN")

def extract(s):
    try:
        [extracted] = re.findall(REGEX,s)
    except ValueError:
        return []
    else:
        return extracted.split()
>>> extract("it_PRON is_AUX a_DET beautiful_ADJ and_CCONJ big_ADJ apple_NOUN")
['beautiful_ADJ','and_CCONJ','big_ADJ','apple_NOUN']

>>> extract("it_PRON is_AUX a_DET beautiful_ADJ apple_NOUN")
['beautiful_ADJ','apple_NOUN']
,

我知道您有 texts = ["it is a beautiful apple","it is a beautiful and big apple"],并计划定义几个 Matcher 模式来提取您拥有的文本中的某些 POS 模式。

您可以定义具有所需模式的列表列表,并将其作为第三个+参数传递给matcher.add

from spacy.matcher import Matcher,PhraseMatcher
import spacy
from spacy.matcher import Matcher

nlp = spacy.load("en_core_web_sm")
matcher = Matcher(nlp.vocab,validate=True)
patterns = [
    [{'POS': 'ADJ'},{'POS': 'NOUN'}],[{'POS': 'ADJ'},{'POS': 'CCONJ'},{'POS': 'ADJ'},{'POS': 'PUNCT'},{'POS': 'NOUN'}]
]
matcher.add("process_1",None,*patterns)

texts= ["it is a beautiful apple","it is a beautiful and big apple"]
for text in texts:
    doc = nlp(text)
    matches = matcher(doc)
    for _,start,end in matches:
        print(doc[start:end].text)
   
# => beautiful apple
#    beautiful and big apple
#    big apple