问题描述
我正在尝试替换“年龄”列的缺失值,但在此数据的其他列的情况下Titanic - Machine Learning from Disaster
df.Age[(df['Sex'] == 0) & (df['Pclass'] == 1)]
我尝试使用 SimpleImputer 做到这一点:
from sklearn.impute import SimpleImputer
Imputer = SimpleImputer(missing_values=np.nan,strategy='most_frequent')
Imputer.fit_transform( pd.DataFrame(df.Age[(df['Sex'] == 0) & (df['Pclass'] == 1)]) )
但它不起作用并试图将值保存到列中:
df.loc[(df.Age.isnull()) & (df.Age[(df['Sex'] == 0) & (df['Pclass'] == 1)]),'Age'] = Imputer.fit_transform( pd.DataFrame(df.Age[(df['Sex'] == 0) & (df['Pclass'] == 1)]) )
但也不起作用。
我尝试使用 fillna()
手动执行此操作df.loc[(df['Sex'] == 0) & (df['Pclass'] == 1),'Age'].fillna(int(df.Age[(df['Sex'] == 0) & (df['Pclass'] == 1)].mode()),inplace=True)
我尝试使用索引来访问行并更新它们的值:
mod = int(df.Age[(df['Sex'] == 0) & (df['Pclass'] == 1)].mode())
indices = df.loc[(df.Age.isnull()) & (df.Sex == 0) & (df.Pclass == 1),'Age'].isnull().index
df.loc[ind,'Age'] = mod
df[(df['Sex'] == 0) & (df['Pclass'] == 1)]['Age'].isnull().sum()
它有效并且输出为:0,但是当我尝试将它应用于 for 循环时,它给了我一个错误
for i in range(1,3):
for j in range(1,4):
indices = df.loc[(df.Sex == i) & (df.Pclass == j),'Age'].isnull().index
mod = int(df.Age[(df['Sex'] == i) & (df['Pclass'] == j)].mode())
df.loc[ind,'Age'] = mod
我想知道前两种方式有什么问题,为什么第三种不能循环工作?
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)