问题描述
嗨,天才,祝你有美好的一天 情况:
T [M] an array sorts in ascending order.
Write an algorithm that calculates the number of occurrences of an integer x in the array T[M].
the number of comparison of x to the elements of T,must be of order log n
我的尝试是:
def Occurrence(T,X,n):{
if ( n=0 ){ return 0;}
else {
Occurrence(T,n/2);
if( T[n]==X ){ return 1+Occurrence(T,x,n/2); }
else { return Occurrence(T,n/2); }
}the end of code
complexity is :
0 if n=0
we have O(n)={
1+O(n/2) if n>0
O(n)=1+1+1+....+O(n/2^(n))=n+O(2/2^(n))
when algorithm stopp if{existe k n=2^(k),so O(n)=n+1 }
n/2^(n)=1) => O(n)=log(n)+1,so you think my code is true ?
</pre>
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)