问题描述
我有一个 Pandas 数据框,其中有一列包含一个包含信息的数组列表。它看起来像这样:
id basket date
c1 [{'product_id': 'P64','price': 1146}] 2020-08-11
c2 [{'product_id': 'P44','price': 1426},2020-08-11
{'product_id': 'P49','price': 1108}]
c3 [{'product_id': 'P60','price': 39},'price': 1155},{'product_id': 'P46','price': 178}]
我想将篮子列展平,使其看起来像这样:
id product_id price date
c1 P64 1146 2020-08-11
c2 P44 1426 2020-08-11
c2 P49 1108 2020-08-11
c3 P60 39 2020-08-11
c3 P49 1155 2020-08-11
c3 P46 178 2020-08-11
我似乎无法弄清楚,任何帮助将不胜感激。
解决方法
Split (explode) pandas dataframe string entry to separate rows 有爆炸功能,很棒。
# ---- MAKE MODELS ---- #
NUMBER_OF_MODELS = 4
models = []
for i in range(NUMBER_OF_MODELS):
model = keras.models.Sequential(name=f'{i}')
model.add(keras.layers.Dense(8,activation='relu',input_shape=df_train['features'].values.shape[-1:]))
model.add(keras.layers.Dense(3,activation='softmax'))
model.compile(optimizer=keras.optimizers.Adam(),loss=keras.losses.CategoricalCrossentropy(),metrics=[keras.metrics.CategoricalAccuracy()])
model.summary()
models.append(model)
# --------------------- #
# ---- TRAIN MODELS ---- #
histories = []
for model in models:
with tf.device('/cpu:0'):
history = model.fit(x=df_train['features'].values,y=df_train['labels'].values,validation_data=(df_val['features'].values,df_val['labels'].values),batch_size=512,epochs=100,verbose=0)
histories.append(history)
# ---------------------- #
你会打电话
def explode(df,lst_cols,fill_value='',preserve_index=False):
# make sure `lst_cols` is list-alike
if (lst_cols is not None
and len(lst_cols) > 0
and not isinstance(lst_cols,(list,tuple,np.ndarray,pd.Series))):
lst_cols = [lst_cols]
# all columns except `lst_cols`
idx_cols = df.columns.difference(lst_cols)
# calculate lengths of lists
lens = df[lst_cols[0]].str.len()
# preserve original index values
idx = np.repeat(df.index.values,lens)
# create "exploded" DF
res = (pd.DataFrame({
col:np.repeat(df[col].values,lens)
for col in idx_cols},index=idx)
.assign(**{col:np.concatenate(df.loc[lens>0,col].values)
for col in lst_cols}))
# append those rows that have empty lists
if (lens == 0).any():
# at least one list in cells is empty
res = (res.append(df.loc[lens==0,idx_cols],sort=False)
.fillna(fill_value))
# revert the original index order
res = res.sort_index()
# reset index if requested
if not preserve_index:
res = res.reset_index(drop=True)
return res
那么你就必须将键和值拆分成单独的列,这 Explode dict from Pandas column 就是这样做的。
,试试:
x = [pd.DataFrame(i) for i in df['basket']]
for idx,data in enumerate(x):
data['id']=df.iloc[idx]['id']
data['date']=df.iloc[idx]['date']
df2 = pd.concat(x).reset_index(drop=True)
df2:
product_id price id date
0 P64 1146 c1 2020-08-11
1 P44 1426 c2 2020-08-11
2 P49 1108 c2 2020-08-11
3 P60 39 c3 2020-08-11
4 P49 1155 c3 2020-08-11
5 P46 178 c3 2020-08-11
,
您可以使用:
import pandas
from pandas import json_normalize
combined = pandas.concat([json_normalize(df['basket']) for column in df])
内联 for 循环为列篮中的每个键创建一个对象列表。然后,使用 pandas.concat,将每个列表连接到一个数据帧中并将其返回组合。 我用它来扁平化 MongoDb 查询结果。之后,您必须添加其他列。