问题描述
我正在尝试使用 SCIP optimization
找到设施的最佳打开顺序
给定距离住宅区的距离并为数量加权
该地区的居民。
我已经设置了距离字典,以便从设施到
每个住宅区应为设施产生 [2,1,0]
订单的输出。
但是,我收到的输出是 [0,2]
。
此外,如果我将 alpha 更改为正值,则没有任何影响。
import pandas as pd
from pyscipopt import Model,quicksum,multidict,exp
num_fac_to_open = 3
order_to_open = []
opened_fac = []
closed_fac = [0,2]
# Facility id
S = [0,2]
# Residential block id
R = [10,11,12]
distance_dict = {(0,10): 0.8,(1,10): 150.6,(2,10): 100007.8,(0,11): 1.0,11): 2012.1,11): 10009.2,12): 3.2,12): 1798.3,12): 10006.3}
population_dict = {10:54,11:46,12:22}
alpha = -1
# n is the desired number of facilities to open
n = len(opened_fac) + num_fac_to_open
# create a model
model = Model()
z,y= {},{}
for s in S:
# x_i is binary,1 if service facility i is opened,0 otherwise
z[s] = model.addVar(vtype="B")
for r in R:
# y_i,j is binary,1 if service facility i is assigned to residential area j,0 otherwise
y[s,r] = model.addVar(vtype="B")
for r in R:
model.addCons(quicksum(y[s,r] for s in S) == 1)
#
for s in S:
for r in R:
model.addCons(y[s,r]-z[s] <= 0)
#
model.addCons(quicksum(z[s] for s in S) == n)
#
for facility in opened_fac:
model.addCons(z[facility] == 1)
x,w = {},{}
for r in R:
x[r] = model.addVar(vtype="C",name="x(%s)"%(r))
w[r] = model.addVar(vtype="C",name="w(%s)"%(r))
for r in R:
x[r] = quicksum(distance_dict[s,r]*y[s,r] for s in S)
exp_power = alpha*population_dict[r]*x[r]
model.addCons((w[r] - exp(exp_power)) >= 0)
#
#print(quicksum(w[r] for r in R))
model.setObjective(quicksum(w[r] for r in R),'minimize')
model.optimize()
new_facilities = []
for s in S:
if ((model.getVal(z[s]) == 1) and (not s in opened_fac)):
new_facilities.append(s)
if len(new_facilities) == num_fac_to_open:
break
print(new_facilities)
我正在尝试优化以下问题:
目标是minimize sum_{r=1}^N W_r
哪里W_r = exp(population_dict[r]*sum_{s∈S} d_r,s * y_r,s)
∀r ∈ R
对这个问题的任何帮助都会很棒!
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)