处理来自 YOLOv5 TFlite 的输出数据

问题描述

❔问题

嗨,我已经成功训练了一个基于 YOLOv5s 的自定义模型并将模型转换为 TFlite。我觉得问的很傻,但你如何使用输出数据?

我得到的输出:

但我希望输出如下:

  • StatefulPartitionedCall:3 = [1,10,4] # 个盒子
  • StatefulPartitionedCall:2 = [1,10] # 个类
  • StatefulPartitionedCall:1 = [1,10] #scores
  • StatefulPartitionedCall:0 = [1] #count (这个来自 tensorflow lite mobilenet 模型(经过训练以提供 10 个输出数据,tflite 的默认值)) Netron mobilenet.tflite model

它也可能是某种其他形式的输出,但老实说,我不知道如何从 [1,7] 数组中获取框、类和分数。 (2021 年 1 月 15 日,我将 pytorch、tensorflow 和 yolov5 更新到最新版本)

包含在 [1,7] 数组中的数据可以在这个文件中找到:outputdata.txt

0.011428807862102985,0.006756599526852369,0.04274776205420494,0.034441519528627396,0.00012877583503723145,0.33658933639526367,0.4722323715686798
0.023071227595210075,0.006947836373001337,0.046426184475421906,0.023744791746139526,0.0002465546131134033,0.29862138628959656,0.4498370885848999
0.03636947274208069,0.006819264497607946,0.04913407564163208,0.025004519149661064,0.00013208389282226562,0.3155967593193054,0.4081345796585083
0.04930267855525017,0.007249316666275263,0.04969717934727669,0.023645592853426933,0.0001222355494974181,0.3123127520084381,0.40113094449043274
...

我应该添加非最大抑制或其他东西,有人可以帮我吗? (github YOLOv5 #1981)

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)