问题描述
我正在尝试训练 XGBoost 算法,但收到以下警告:
This may not be accurate due to some parameters are only used in language bindings but
passed down to XGBoost core. Or some parameters are not used but slip through this
verification. Please open an issue if you find above cases.
这是我应该担心的事情吗?
这是我的代码:
df_train = pd.read_csv("FullEugFinal.csv ")
y_train = df_train.loc[:,'CLASS']
x_train = df_train.loc[:,'F2ND': 'RMS39']
model = XGBClassifier()
estimators = []
estimators.append(('standardize',StandardScaler()))
estimators.append(('xgb',XGBClassifier(silent=False,n_jobs=1,scale_pos_weight=1,learning_rate=0.009,colsample_bytree = 0.4,subsample = 0.8,objective='binary:logistic',n_estimators=1100,reg_alpha = 0.3,max_depth=4,gamma=0)))
model = Pipeline(estimators)
# define evaluation procedure
kfold = RepeatedStratifiedKFold(n_splits=10,n_repeats=3,random_state=6)
cv_relusts = cross_val_score(model,x_train,y_train,cv=kfold,scoring='accuracy')
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)