问题描述
我改进模型的代码是:
clf = RandomForestRegressor()
parameters = {'n_estimators': [4,6,9],'max_features': ['log2','sqrt','auto'],'criterion': ['mse','mae'],'max_depth': [2,3,5,10],'min_samples_split': [2,5],'min_samples_leaf': [2,8]
}
print("Improving accuracy")
acc_scorer = make_scorer(accuracy_score)
print("Running Grid Search")
grid_obj = gridsearchcv(clf,parameters,scoring=acc_scorer)
print("Fitting using optimal parameters")
grid_obj = grid_obj.fit(train_X_g_h,train_y_g_h)
clf = grid_obj.best_estimator_
print("Fit the best algorithm to the data")
clf.fit(train_X_g_h,train_y_g_h)
print("Running predictions")
predictions = clf.predict(val_X_g_h)
predictions = pd.DataFrame({'Result' : predictions})
print("Getting Accuracy score")
print(accuracy_score(val_y_g_h,predictions))
我得到的错误是: ValueError:分类指标无法处理多类和连续目标的混合
我阅读了文档,但找不到任何支持来估计 RandomForestRegressor
模型的准确性
那么,有什么方法可以让我的模型获得准确度并将其与 gridsearchcv 一起使用?
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)