问题描述
这是解决N-Queens问题的python源代码(假设n等于6)。
class NQueens:
def __init__(self,size):
# Store the puzzle (problem) size and the number of valid solutions
self.size = size
self.solutions = 0
self.solve()
def solve(self):
positions = [-1] * self.size
self.put_queen(positions,0)
print("Found",self.solutions,"solutions.")
def put_queen(self,positions,target_row):
if target_row == self.size:
self.show_full_board(positions)
self.solutions += 1
else:
for column in range(self.size):
if self.check_place(positions,target_row,column):
positions[target_row] = column
self.put_queen(positions,target_row + 1)
def check_place(self,ocuppied_rows,column):
for i in range(ocuppied_rows):
if positions[i] == column or \
positions[i] - i == column - ocuppied_rows or \
positions[i] + i == column + ocuppied_rows:
return False
return True
def show_full_board(self,positions):
for row in range(self.size):
line = ""
for column in range(self.size):
if positions[row] == column:
line += "Q "
else:
line += ". "
print(line)
print("\n")
def main():
NQueens(6)
if __name__ == "__main__":
main()
什么是 MRV 策略? 我如何修改此代码以在选择下一个女王时考虑 MRV 策略?
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)