问题描述
我想请教您如何解决这个问题。 我有两个图片文件夹,一个作为训练集,另一个作为验证。 我所做的是使用 ImageDataGenerator:
train_datagen = ImageDataGenerator(
rescale=1./255,rotation_range=40,#integer degree range for random rotations
shear_range=0.2,zoom_range=0.2,horizontal_flip=True)
# to have a better performance in accuracy measure I just rescale the test
test_datagen = ImageDataGenerator(rescale=1./255)
# apply ImageDataGenerator on requierd folde
train_generator = train_datagen.flow_from_directory(
'/content/drive/MyDrive/NN_HW2/training/training/',# this is the target directory
target_size=(150,150),# all images will be resized to 150x150
batch_size=batch_size,class_mode='categorical') # since I am in multicalss calssification
# this is a similar generator,for validation data
validation_generator = test_datagen.flow_from_directory(
'/content/drive/MyDrive/NN_HW2/validation/validation/',target_size=(150,batch_size=batch_size,class_mode='categorical')
然后,我这样定义我的模型:
model = Sequential()
model.add(Conv2D(32,(3,3),input_shape=(150,150,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
model.add(Conv2D(32,2)))
model.add(Dropout(0.2))
model.add(Conv2D(64,2)))
model.add(Dropout(0.2))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',optimizer='Adam',metrics=['accuracy']
)
因此,当我尝试拟合模型时,colab 会引发以下错误:
model.fit_generator(
train_generator,steps_per_epoch=1000//batch_size,epochs=25,validation_data=validation_generator,steps_per_epoch=500//batch_size
)
Matrix size-incompatible: In[0]: [16,10],In[1]: [64,1]
[[node gradient_tape/sequential_3/dense_7/MatMul (defined at <ipython-input-22-f61b6c381681>:7) ]] [Op:__inference_train_function_3405]
Function call stack:
train_function
感谢您的时间
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)