为什么USB CDC在接收数据时挂起?

问题描述

下午好,我正在 USB (CDC) com 端口上使用 stm32 Blue Pill,“IAR”开发环境。 我已经为 stm32 连接了一个12 以与 W25Qxx SPI 闪存驱动器一起使用...

我在 main.c 文件中运行了如下测试: 写字节,读字节,写页,读页, 扇区写入、扇区读取、块写入、块读取。 所有检查都成功,闪存驱动器工作正常,库没有问题。

问题如下,当我通过应用程序或终端连接到端口并尝试发送数据时 以“HEX”格式 1E 01 0A 02 00 00 09 C4 03,然后通过微控制器(W25Qxx)将它们写入内存然后 USB CDC 在 stm32 上接收数据包和重新连接时冻结(崩溃) 计算机上出现“无法识别 USB 设备”消息。

3.3v 电源没有关闭

为了让你检查一下,我举个例子:

该项目是通过 STM32CubeMX 创建的。

Main.c

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; copyright (c) 2020 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under Ultimate Liberty license
  * SLA0044,the "License"; You may not use this file except in compliance with
  * the License. You may obtain a copy of the License at:
  *                             www.st.com/SLA0044
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usb_device.h"
#include "usbd_cdc_if.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "string.h" // это для функции strlen()
#include "stdio.h"
#include "w25qxx.h"

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
DMA_HandleTypeDef hdma_adc1;
SPI_HandleTypeDef hspi2;
UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_ADC2_Init(void);
static void MX_SPI2_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals,Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_USB_DEVICE_Init();
  MX_ADC1_Init();
  MX_ADC2_Init();
  MX_SPI2_Init();
  MX_USART1_UART_Init();
  W25qxx_Init();
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
while (1)
  {
    
  }
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */

  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the cpu,AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct,FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC|RCC_PERIPHCLK_USB;
  PeriphClkInit.AdcclockSelection = RCC_ADCPCLK2_DIV6;
  PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_PLL_DIV1_5;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief ADC1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC1_Init(void)
{

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_MultiModeTypeDef multimode = {0};
  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */
  /** Common config
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ScanConvMode = ADC_SCAN_disABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.discontinuousConvMode = disABLE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrofConversion = 1;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure the ADC multi-mode
  */
  multimode.Mode = ADC_DUALMODE_REGSIMULT;
  if (HAL_ADCEx_MultiModeConfigChannel(&hadc1,&multimode) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_0;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
  if (HAL_ADC_ConfigChannel(&hadc1,&sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */

  /* USER CODE END ADC1_Init 2 */

}

/**
  * @brief ADC2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC2_Init(void)
{

  /* USER CODE BEGIN ADC2_Init 0 */

  /* USER CODE END ADC2_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC2_Init 1 */

  /* USER CODE END ADC2_Init 1 */
  /** Common config
  */
  hadc2.Instance = ADC2;
  hadc2.Init.ScanConvMode = ADC_SCAN_disABLE;
  hadc2.Init.ContinuousConvMode = ENABLE;
  hadc2.Init.discontinuousConvMode = disABLE;
  hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc2.Init.NbrofConversion = 1;
  if (HAL_ADC_Init(&hadc2) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_1;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
  if (HAL_ADC_ConfigChannel(&hadc2,&sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC2_Init 2 */

  /* USER CODE END ADC2_Init 2 */

}

/**
  * @brief SPI2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI2_Init(void)
{

  /* USER CODE BEGIN SPI2_Init 0 */

  /* USER CODE END SPI2_Init 0 */

  /* USER CODE BEGIN SPI2_Init 1 */

  /* USER CODE END SPI2_Init 1 */
  /* SPI2 parameter configuration*/
  hspi2.Instance = SPI2;
  hspi2.Init.Mode = SPI_MODE_MASTER;
  hspi2.Init.Direction = SPI_DIRECTION_2LInes;
  hspi2.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi2.Init.NSS = SPI_NSS_SOFT;
  hspi2.Init.BaudratePrescaler = SPI_BAUdratEPRESCALER_2;
  hspi2.Init.FirstBit = SPI_FirsTBIT_MSB;
  hspi2.Init.TIMode = SPI_TIMODE_disABLE;
  hspi2.Init.CRCCalculation = SPI_CRCCALculaTION_disABLE;
  hspi2.Init.CRCpolynomial = 10;
  if (HAL_SPI_Init(&hspi2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI2_Init 2 */

  /* USER CODE END SPI2_Init 2 */

}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.Baudrate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Channel1_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn,0);
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LED_GPIO_Port,LED_Pin,GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(FLASH_CS_GPIO_Port,FLASH_CS_Pin,GPIO_PIN_SET);

  /*Configure GPIO pin : LED_Pin */
  GPIO_InitStruct.Pin = LED_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_nopULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(LED_GPIO_Port,&GPIO_InitStruct);

  /*Configure GPIO pin : FLASH_CS_Pin */
  GPIO_InitStruct.Pin = FLASH_CS_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_nopULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(FLASH_CS_GPIO_Port,&GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */

  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_Failed(uint8_t *file,uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,tex: printf("Wrong parameters value: file %s on line %d\r\n",file,line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) copYRIGHT STMicroelectronics *****END OF FILE****/

添加到 usbd_cdc_if.c 文件

/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/
#include "usbd_cdc_if.h"
#include "w25qxx.h"

static int8_t CDC_Receive_FS(uint8_t* Buf,uint32_t *Len)
{
  /* USER CODE BEGIN 6 */
   if(Buf !=NULL)
 {    
      //Identifier
     if(Buf[0] == 30)
      {
    W25qxx_EraseSector(0); // 4096 byte
  //W25qxx_WritePage (Buf,9);
    W25qxx_WriteByte(Buf[1],0); //checkBox 0-1
    W25qxx_WriteByte(Buf[2],1); //button_min 0-60
    W25qxx_WriteByte(Buf[3],2); //radioButton 2-3
    W25qxx_WriteByte(Buf[4],3); //voltage
    W25qxx_WriteByte(Buf[5],4); //voltage
    W25qxx_WriteByte(Buf[6],5); //voltage
    W25qxx_WriteByte(Buf[7],6); //voltage
    W25qxx_WriteByte(Buf[8],7); //pul 0-199 
   }
 
 }
    USBD_CDC_ReceivePacket(&hUsbDeviceFS);
    return (USBD_OK);
  /* USER CODE END 6 */
}

为了验证,发明了一个缓冲区接收测试(成功)不会挂起。

添加到 usbd_cdc_if.c 文件

uint8_t checkBox;
uint8_t button_min;
uint8_t radioButton;
int voltage;
uint8_t pul;
static int8_t CDC_Receive_FS(uint8_t* Buf,uint32_t *Len)
{
  /* USER CODE BEGIN 6 */
  if(Buf !=NULL)
  {    
      //Identifier
      if(Buf[0] == 30)
      {
        checkBox = Buf[1];
        button_min = Buf[2];
        radioButton = Buf[3];
        voltage = (Buf[4] << 24) | (Buf[5] << 16) | (Buf[6] << 28) | (Buf[7] << 0);
        pul = Buf[8];
     }
  }
  
    USBD_CDC_ReceivePacket(&hUsbDeviceFS);
    return (USBD_OK);
  /* USER CODE END 6 */
}

为了检查,发明了一个 LED 测试(成功)。

static int8_t CDC_Receive_FS(uint8_t* Buf,uint32_t *Len)
{
  /* USER CODE BEGIN 6 */
  if(Buf !=NULL)
  {    
      //Identifier
      if(Buf[0] == 30)
      {
         if(Buf[1] == 1)
         {
       HAL_GPIO_WritePin(LED_GPIO_Port,GPIO_PIN_SET);
         }
        else if (Buf[1] == 0)
        {
       HAL_GPIO_WritePin(LED_GPIO_Port,GPIO_PIN_RESET);
        }
     }
  }
    USBD_CDC_ReceivePacket(&hUsbDeviceFS);
    return (USBD_OK);
  /* USER CODE END 6 */
}

解决方法

据我所知,函数“CDC_Receive_FS()”是来自 USB 中断的回调。 所以直接从 IRQ 写入内存是不好的,因为它会阻塞其他中断。

更好的解决方案是将接收缓冲区复制到本地结构并设置标志。在主循环中,您可以监视标志并开始写入。