如何离散持续时间溢出的时间序列? 输出

问题描述

我正在尝试离散化我的数据框,如下所示:

开始日期 停放时间(分钟) 充电时间(分钟) 能源(千瓦时)
49698 2016-01-01 11:48:00 230 92.0 3.034643
49710 2016-01-01 13:43:00 225 225.0 12.427662
49732 2016-01-01 22:43:00 708 111.0 10.752058
49736 2016-01-02 07:09:00 149 149.0 11.160776
49745 2016-01-02 10:29:00 156 156.0 10.298505
49758 2016-01-02 13:06:00 84 84.0 2.904127
49768 2016-01-02 15:00:00 27 26.0 2.573858
49773 2016-01-02 15:31:00 174 152.0 14.961943
49775 2016-01-02 16:01:00 195 167.0 16.317518
49790 2016-01-02 19:37:00 108 108.0 10.829344
49791 2016-01-02 19:56:00 289 26.0 2.552439
49802 2016-01-03 09:23:00 58 58.0 5.243358
49803 2016-01-03 09:33:00 264 134.0 6.782309
49813 2016-01-03 11:12:00 240 0.0 0.008115
49825 2016-01-03 14:12:00 97 96.0 5.29069
49833 2016-01-03 15:52:00 201 201.0 16.058235
49834 2016-01-03 15:52:00 53 52.0 5.304866
49840 2016-01-03 17:27:00 890 219.0 15.878921
49857 2016-01-04 05:57:00 198 127.0 6.368932
49871 2016-01-04 08:48:00 75 74.0 5.99877

我想做的是在 2 小时内采样,如下所示:

开始日期 能源(千瓦时) 充电时间(分钟) 费用
2016-01-01 10:00:00 3.034643 92.0 0.0
2016-01-01 12:00:00 12.427662 225.0 0.0
2016-01-01 14:00:00 0.0 0.0 0.0
2016-01-01 16:00:00 0.0 0.0 0.0
2016-01-01 18:00:00 0.0 0.0 0.0
2016-01-01 20:00:00 0.0 0.0 0.0
2016-01-01 22:00:00 10.752058 111.0 0.0
2016-01-02 00:00:00 0.0 0.0 0.0
2016-01-02 02:00:00 0.0 0.0 0.0
2016-01-02 04:00:00 0.0 0.0 0.0

我做了什么

data.resample('2H',on='Start Date').agg(({'Energy (kWh)':'sum','Charge Duration (mins)':'sum'}))

但是问题是数据溢出了,正如您从第一行看到的那样,充电持续时间为 92 分钟。然而,这 92 分钟中只有 12 分钟在 10:00:00 - 12:00:00 时间段内,但是我使用 resample 的方式将所有充电持续时间分配给了该时间段。我想要的行为是根据开始日期和充电持续时间在时间​​段中“均匀地”分割它们,这样 12 分钟属于第一个时间段,其余 80 分钟属于下一个时间段。也有 EV 充电超过 3 个周期的情况。我希望这是有道理的。 你会怎么做?

这里是逗号分隔值的原始数据:

,开始日期,停车时间(分钟),充电时间(分钟),能量(千瓦时) 49698,2016-01-01 11:48:00,230,92.0,3.034643 49710,2016-01-01 13:43:00,225,225.0,12.427662 49732,2016-01-01 22:43:00,708,111.0,10.752058 49736,2016-01-02 07:09:00,149,149.0,11.160776 49745,2016-01-02 10:29:00,156,156.0,10.298505 49758,2016-01-02 13:06:00,84,84.0,2.904127 49768,2016-01-02 15:00:00,27,26.0,2.573858 49773,2016-01-02 15:31:00,174,152.0,14.961943 49775,2016-01-02 16:01:00,195,167.0,16.317518 49790,2016-01-02 19:37:00,108,108.0,10.829344 49791,2016-01-02 19:56:00,289,2.552439 49802,2016-01-03 09:23:00,58,58.0,5.243358 49803,2016-01-03 09:33:00,264,134.0,6.782309 49813,2016-01-03 11:12:00,240,0.0,0.008115 49825,2016-01-03 14:12:00,97,96.0,5.29069 49833,2016-01-03 15:52:00,201,201.0,16.058235 49834,53,52.0,5.304866 49840,2016-01-03 17:27:00,890,219.0,15.878921 49857,2016-01-04 05:57:00,198,127.0,6.368932 49871,2016-01-04 08:48:00,75,74.0,5.99877

解决方法

我没有看到一个完全直接的方法。有效地为每一行构建了一个数据框,并使用比率在目标行之间拆分值。

import io
df = pd.read_csv(io.StringIO("""    Start Date  Park Duration (mins)    Charge Duration (mins)  Energy (kWh)
49698   2016-01-01 11:48:00 230 92.0    3.034643
49710   2016-01-01 13:43:00 225 225.0   12.427662
49732   2016-01-01 22:43:00 708 111.0   10.752058
49736   2016-01-02 07:09:00 149 149.0   11.160776
49745   2016-01-02 10:29:00 156 156.0   10.298505
49758   2016-01-02 13:06:00 84  84.0    2.904127
49768   2016-01-02 15:00:00 27  26.0    2.573858
49773   2016-01-02 15:31:00 174 152.0   14.961943
49775   2016-01-02 16:01:00 195 167.0   16.317518
49790   2016-01-02 19:37:00 108 108.0   10.829344
49791   2016-01-02 19:56:00 289 26.0    2.552439
49802   2016-01-03 09:23:00 58  58.0    5.243358
49803   2016-01-03 09:33:00 264 134.0   6.782309
49813   2016-01-03 11:12:00 240 0.0 0.008115
49825   2016-01-03 14:12:00 97  96.0    5.29069
49833   2016-01-03 15:52:00 201 201.0   16.058235
49834   2016-01-03 15:52:00 53  52.0    5.304866
49840   2016-01-03 17:27:00 890 219.0   15.878921
49857   2016-01-04 05:57:00 198 127.0   6.368932
49871   2016-01-04 08:48:00 75  74.0    5.99877"""),sep="\t",index_col=0)

df["Start Date"] = pd.to_datetime(df["Start Date"])

def proportionalsplit(s,freq="2H"):
    st = s["Start Date"]
    et = st + pd.Timedelta(minutes=s["Charge Duration (mins)"])
    tr = pd.date_range(st.floor(freq),et,freq=freq)
    lmin = {"2H":120}
    # ratio of how numeric values should be split across new buckets
    ratio = np.minimum((np.where(tr<st,tr.shift()-st,et-tr)/(10**9*60)).astype(int),np.full(len(tr),lmin[freq]))
    ratio = ratio / ratio.sum()
    return {"Start Date":tr,"Original Duration":np.full(len(tr),s["Charge Duration (mins)"]),"Original Start":np.full(len(tr),s["Start Date"]),"Original Index": np.full(len(tr),s.name),"Charge Duration (mins)": s["Charge Duration (mins)"] * ratio,"Energy (kWh)": s["Energy (kWh)"] * ratio,}

df2 = pd.concat([pd.DataFrame(v) for v in df.apply(proportionalsplit,axis=1).values]).reset_index(drop=True)
# everything OK?
print(df2["Energy (kWh)"].sum().round(3)==df["Energy (kWh)"].sum().round(3),df2["Charge Duration (mins)"].sum().round(3)==df["Charge Duration (mins)"].sum().round(3),)

# let's have a look at everything in 2H resample...
df3 = df2.groupby(["Start Date"]).agg({**{c:lambda s: list(s) for c in df2.columns if "Original" in c},**{c:"sum" for c in ["Charge Duration (mins)","Energy (kWh)"]}})

输出

                               Original Duration                                                                        Original Start                Original Index  Charge Duration (mins)  Energy (kWh)
Start Date                                                                                                                                                                                                
2016-01-01 10:00:00                       [92.0]                                                                 [2016-01-01 11:48:00]                       [49698]                    12.0      0.395823
2016-01-01 12:00:00                [92.0,225.0]                                            [2016-01-01 11:48:00,2016-01-01 13:43:00]                [49698,49710]                    97.0      3.577799
2016-01-01 14:00:00                      [225.0]                                                                 [2016-01-01 13:43:00]                       [49710]                   120.0      6.628086
2016-01-01 16:00:00                      [225.0]                                                                 [2016-01-01 13:43:00]                       [49710]                    88.0      4.860597
2016-01-01 22:00:00                      [111.0]                                                                 [2016-01-01 22:43:00]                       [49732]                    77.0      7.458635
2016-01-02 00:00:00                      [111.0]                                                                 [2016-01-01 22:43:00]                       [49732]                    34.0      3.293423
2016-01-02 06:00:00                      [149.0]                                                                 [2016-01-02 07:09:00]                       [49736]                    51.0      3.820131
2016-01-02 08:00:00                      [149.0]                                                                 [2016-01-02 07:09:00]                       [49736]                    98.0      7.340645
2016-01-02 10:00:00                      [156.0]                                                                 [2016-01-02 10:29:00]                       [49745]                    91.0      6.007461
2016-01-02 12:00:00                [156.0,84.0]                                            [2016-01-02 10:29:00,2016-01-02 13:06:00]                [49745,49758]                   119.0      6.157983
2016-01-02 14:00:00          [84.0,26.0,152.0]                       [2016-01-02 13:06:00,2016-01-02 15:00:00,2016-01-02 15:31:00]         [49758,49768,49773]                    85.0      6.465627
2016-01-02 16:00:00               [152.0,167.0]                                            [2016-01-02 15:31:00,2016-01-02 16:01:00]                [49773,49775]                   239.0     23.439513
2016-01-02 18:00:00  [152.0,167.0,108.0,26.0]  [2016-01-02 15:31:00,2016-01-02 16:01:00,2016-01-02 19:37:00,2016-01-02 19:56:00]  [49773,49775,49790,49791]                    78.0      7.684299
2016-01-02 20:00:00                [108.0,26.0]                                            [2016-01-02 19:37:00,2016-01-02 19:56:00]                [49790,49791]                   107.0     10.682851
2016-01-03 08:00:00                [58.0,134.0]                                            [2016-01-03 09:23:00,2016-01-03 09:33:00]                [49802,49803]                    64.0      4.711485
2016-01-03 10:00:00           [58.0,134.0,0.0]                       [2016-01-03 09:23:00,2016-01-03 09:33:00,2016-01-03 11:12:00]         [49802,49803,49813]                   128.0      7.322297
2016-01-03 14:00:00          [96.0,201.0,52.0]                       [2016-01-03 14:12:00,2016-01-03 15:52:00,2016-01-03 15:52:00]         [49825,49833,49834]                   112.0      6.745957
2016-01-03 16:00:00         [201.0,52.0,219.0]                       [2016-01-03 15:52:00,2016-01-03 17:27:00]         [49833,49834,49840]                   197.0     16.468453
2016-01-03 18:00:00               [201.0,219.0]                                            [2016-01-03 15:52:00,2016-01-03 17:27:00]                [49833,49840]                   193.0     14.532874
2016-01-03 20:00:00                      [219.0]                                                                 [2016-01-03 17:27:00]                       [49840]                    66.0      4.785428
2016-01-04 04:00:00                      [127.0]                                                                 [2016-01-04 05:57:00]                       [49857]                     3.0      0.150447
2016-01-04 06:00:00                      [127.0]                                                                 [2016-01-04 05:57:00]                       [49857]                   120.0      6.017889
2016-01-04 08:00:00                [127.0,74.0]                                            [2016-01-04 05:57:00,2016-01-04 08:48:00]                [49857,49871]                    76.0      6.037237
2016-01-04 10:00:00                       [74.0]                                                                 [2016-01-04 08:48:00]                       [49871]                     2.0      0.162129