问题描述
我尝试使用 Pandas 将 JSON 文件转换为 DataFrame。我将 pd.json_normalize 与 Meta 一起使用,但我的 DataFrame 中又嵌套了一个字典。也许我不能使用 pd.json_normalize,你有什么想法吗? 也许我必须在使用 Pandas 之前将数据展平。
request_json_decoding =\
{'_typ': 'Index','assetClass': 'EQUITY','basket': {'basketDate': '2020-12-02T00:00:00.000+0100','constituents': [{'asset': {'_typ': 'Asset','allAnalytics': [{'marketCap': 2889054400}],'ccy': 'EUR','exposureCtry': 'DEU','id': {'code': '2603021'},'moreIds': [{'codScheme': 'ISIN','code': 'DE000A2GS5D8'},{'codScheme': 'SEDOL','code': 'BFYTTC2'},{'codScheme': 'INST_NUM','code': '5679589'}],'name': 'DERMAPHARM HOLDING SE','sectors': [{'code': '551','type': 'HSBC'},{'code': '4577','type': 'ICB'}]},'exchRate': {'rate': 1.2077999235945769},'factor': 1,'price': 53.66,'weight': 0.0008423553691237516},{'asset': {'_typ': 'Asset','allAnalytics': [{'marketCap': 396594792}],'id': {'code': '1506422'},'code': 'DE0007193500'},'code': '5558203'},'code': '1050870'}],'name': 'KOENIG & BAUER AG','sectors': [{'code': '331',{'code': '2757','price': 24,'weight': 0.000280826220184372},'allAnalytics': [{'marketCap': 963572493.252}],'ccy': 'GBP','exposureCtry': 'GBR','id': {'code': '634295'},'code': 'GB00B0744359'},'code': 'B074435'},'code': '1388802'}],'name': 'ESSENTRA PLC','sectors': [{'code': '211',{'code': '2797','exchRate': {'rate': 1.3325000766187542},'price': 3.194,'weight': 0.0008855804882485151}]},'ccy': 'USD','id': {'code': '33','source': 'INDICE'},'indexFreq': 'NONE','indexType': 'COMPOSITE','name': 'MSCI EUROPE (16) SMALL CAP','pricingSourceType': 'NF','sourceId': {'code': '106233','source': 'CODESF'}}
df = pd.json_normalize(request_json_decoding,['basket',['constituents']])
输出:
factor price weight asset._typ asset.allAnalytics asset.assetClass asset.ccy asset.exposureCtry asset.id.code asset.moreIds asset.name asset.sectors exchRate.rate
0 1 53.660 0.000842 Asset [{'marketCap': 2889054400}] EQUITY EUR DEU 2603021 [{'codScheme': 'ISIN','code': '5679589'}] DERMAPHARM HOLDING SE [{'code': '551','type': 'ICB'}] 1.2078
1 1 24.000 0.000281 Asset [{'marketCap': 396594792}] EQUITY EUR DEU 1506422 [{'codScheme': 'ISIN','code': '1050870'}] KOENIG & BAUER AG [{'code': '331','type': 'ICB'}] 1.2078
2 1 3.194 0.000886 Asset [{'marketCap': 963572493.252}] EQUITY GBP GBR 634295 [{'codScheme': 'ISIN','code': '1388802'}] ESSENTRA PLC [{'code': '211','type': 'ICB'}] 1.3325
解决方法
方法
- 初始
json_normalize()
- 重复
-
explode()
列表 -
reset_index(drop=True)
确保有一个可用的连接索引 -
join()
apply(pd.Series)
扩展分解列表中嵌入的dict
-
df = (pd.json_normalize(request_json_decoding)
.explode("basket.constituents")
.reset_index(drop=True)
)
df = df.join(df["basket.constituents"].apply(pd.Series)).drop(columns="basket.constituents")
df = (df.join(df["exchRate"].apply(pd.Series))
.join(df["asset"].apply(pd.Series),rsuffix="_asset").drop(columns="asset")
.explode("moreIds")
.reset_index(drop=True)
)
df.join(df["moreIds"].apply(pd.Series)).drop(columns="moreIds")
样本 2 行
_typ | assetClass | ccy | indexFreq | indexType | 名称 | pricingSourceType | basket.basketDate | id.code | id.source | sourceId.code | sourceId.source | exchRate | 因子 | 价格 | 权重 | 率 | _typ_asset | allAnalytics | assetClass_asset | ccy_asset | exposureCtry | id | name_asset | 扇区 | codScheme | 代码 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 索引 | 股权 | 美元 | 无 | 复合 | MSCI 欧洲 (16) 小盘 | NF | 2020-12-02T00:00:00.000+0100 | 33 | INDICE | 106233 | CODESF | {'rate': 1.2077999235945769} | 1 | 53.66 | 0.000842355 | 1.2078 | 资产 | [{'marketCap': 2889054400}] | 股权 | 欧元 | DEU | {'code': '2603021'} | DERMAPHARM HOLDING SE | [{'code': '551','type': 'HSBC'},{'code': '4577','type': 'ICB'}] | ISIN | DE000A2GS5D8 |
1 | 索引 | 股权 | 美元 | 无 | 复合 | MSCI 欧洲 (16) 小盘 | NF | 2020-12-02T00:00:00.000+0100 | 33 | INDICE | 106233 | CODESF | {'rate': 1.2077999235945769} | 1 | 53.66 | 0.000842355 | 1.2078 | 资产 | [{'marketCap': 2889054400}] | 股权 | 欧元 | DEU | {'code': '2603021'} | DERMAPHARM HOLDING SE | [{'code': '551','type': 'ICB'}] | SEDOL | BFYTTC2 |
我的解决方案,但速度很慢,因为我处理了 100 000 行。
%%time
df = pd.json_normalize(request_json_decoding,['basket',['constituents']])
df_infoindex = pd.json_normalize(request_json_decoding).drop(['basket.constituents'],axis=1)
df_allanalytics = df.explode('asset.allAnalytics')
df_allanalytics = pd.json_normalize(df_allanalytics['asset.allAnalytics'])
name_allanalytics = df_allanalytics.columns
df['asset.allAnalytics'] = df_allanalytics
df.rename(columns = {'asset.allAnalytics' : name_allanalytics[0]},inplace = True)
#Find Codification
codification = df['asset.moreIds'].to_dict()
dict_codif = {}
for i in codification:
if isinstance(codification[i],list):
for ii in codification[i]:
if i not in dict_codif:
dict_codif[i] = ({ii['codScheme']:ii['code']})
else:
dict_codif[i].update({ii['codScheme']:ii['code']})
else:
dict_codif[i] = np.nan
df_codification = pd.DataFrame(dict_codif).T
#Find Sector
sector = df['asset.sectors'].to_dict()
dict_codif = {}
for i in sector:
if isinstance(sector[i],list):
for ii in sector[i]:
if i not in dict_codif:
dict_codif[i] = ({ii['type']:ii['code']})
else:
dict_codif[i].update({ii['type']:ii['code']})
else:
dict_codif[i] = np.nan
df_sector = pd.DataFrame(dict_codif).T
df.drop(['asset.moreIds','asset.sectors'],axis=1,inplace = True)
df_return = pd.concat([df,df_codification,df_sector,pd.concat([df_infoindex]*df.shape[0],ignore_index=True)],axis = 1)