问题描述
我正在使用拥抱脸转换器并对此有所了解。我正在使用 facebook/bart-large-cnn 模型为我的项目执行文本摘要,目前我正在使用以下代码进行一些测试:
text = """
Justin Timberlake and Jessica Biel,welcome to parenthood.
The celebrity couple announced the arrival of their son,Silas Randall Timberlake,in
statements to People."""
from transformers import pipeline
smr_bart = pipeline(task="summarization",model="facebook/bart-large-cnn")
smbart = smr_bart(text,max_length=150)
print(smbart[0]['summary_text'])
一小段代码实际上给了我一个很好的文本摘要。但我的问题是如何在数据框列的顶部应用相同的预训练模型。我的数据框如下所示:
ID Lang Text
1 EN some long text here...
2 EN some long text here...
3 EN some long text here...
.... 等等 50K 行
现在我想将预训练的模型应用于 col Text 以从中生成一个新列 df['summary'] ,结果数据帧应如下所示:
ID Lang Text Summary
1 EN some long text here... Text summary goes here...
2 EN some long text here... Text summary goes here...
3 EN some long text here... Text summary goes here...
我怎样才能做到这一点?任何帮助将不胜感激。
解决方法
您始终可以使用数据框 apply 函数:
df = pd.DataFrame([('EN',text)]*10,columns=['Lang','Text'])
df['summary'] = df.apply(lambda x: smr_bart(x['Text'],max_length=150)[0]['summary_text'],axis=1)
df.head(3)
输出:
Lang Text summary
0 EN \nJustin Timberlake and Jessica Biel,welcome ... The celebrity couple announced the arrival of ...
1 EN \nJustin Timberlake and Jessica Biel,welcome ... The celebrity couple announced the arrival of ...
2 EN \nJustin Timberlake and Jessica Biel,welcome ... The celebrity couple announced the arrival of ...
这有点低效,因为会为每一行调用管道(执行时间为 2 分 16 秒)。因此,我建议将 Text
列转换为列表并将其直接传递给管道(执行时间 41 秒):
df = pd.DataFrame([('EN','Text'])
df['summary'] = [x['summary_text'] for x in smr_bart(df['Text'].tolist(),max_length=150)]
df.head(3)
输出:
Lang Text summary
0 EN \nJustin Timberlake and Jessica Biel,welcome ... The celebrity couple announced the arrival of ...