问题描述
我想使用经过训练的 RL 模型进行离散测试预测。
模型是这样构建的:
model = Sequential()
model.add(Dense(60,activation='relu',input_shape=states))
model.add(Dense(60,input_shape=states))
model.add(Dense(actions,activation='linear'))
self.action_space = discrete(len(ACTION_MAP))
observation_high = np.finfo(np.float32).max
self.observation_space = Box(low=np.array([-observation_high]),high=np.array([observation_high]))
测试功能运行良好:
scores = dqn.test(env,nb_episodes=1,visualize=False,verbose=1,callbacks=[CustomCallback()])
但是当我这样做时:
print(dqn.model.predict_step([30]))
我收到此错误:
ValueError:层密集的输入 0 与层不兼容::预期 min_ndim=2,发现 ndim=0。收到的完整形状:()
这是进行预测的正确方法吗?输入数据应该是什么样的?
解决方法
解决方案:
model = keras.models.load_model('models/130000/')
pf = model.predict(sample_to_predict)
best_action = np.argmax(pf[0])