问题描述
我有一个不平衡的重复测量设计,我想为每个时间段(即曲线)运行单独的方差分析,然后 Bonferroni 对其进行正确的结果。
这里是数据,其中曲线是重复测量:
T_data <-structure(list(mod_id = c(1,2,3,4,5,6,1,7,8,9,8),Curve = structure(c(3L,3L,4L,5L,6L,6L),.Label = c("First","Second","Third","Fourth","Fifth","Sixth"),class = "factor"),Treatment = structure(c(2L,2L,4L),.Label = c("GH","T1","T2","T3"),Topt = c(28.85,29.83,29.89,28.26,29.2,29.1,31.06,32.24,33.03,31.1,32.51,31.91,31.42,31.92,32.02,33.75,32.87,32.76,28.15,28.2,30.89,29.62,29.74,29.36,29.41,28.36,32.53,31.44,31.15,32.15,30.79,32.75,35.02,30.34,33.68,35.01,32.61,31.16,32.11,30.28,30,31.86,29.49,28.96,31.29,30.98,31.41,31.09,32.9,32.54,33.16,33.99,34.18,34.14,28.67,26.96,27.9,24.8,30.76,28.56,29.05,27.08,29.32,32.96,34.25,32.17,31.4,34.68,33.65,33.96,33.04,33.12,34,33.18,34.3,34.46,34.02),A_at_Topt = c(20.36,18.25,18.62,15.51,21.39,16.95,21.73,14.43,16.29,16.52,17.65,18.68,22.13,21.77,20.97,17.75,19.83,18.32,12.6,17.72,16.91,19.22,19.05,20.49,16.36,16.81,16.48,21.29,19.92,18.2,16.09,21.56,19.56,17.09,16.71,20.65,20.2,25.19,21.46,22.63,22.18,21.9,17.86,16.34,17.85,16.25,22.92,19.16,17.77,19.5,20.1,21.5,24.58,22.88,14.97,20.52,22.77,19.96,17.82,18,13.13,16.43,13.09,11.07,7.2,12.87,12.99,17.28,17.04,21.78,19.2,16.42,18.35,12.51,18.72,17.01,19.62,19.28,15.32,19.24,17.22,17.6)),row.names = c(NA,-85L),class = c("tbl_df","tbl","data.frame"))
我遇到的这个问题与 'rstatix' 包和 anova_test() 函数有关。对于 Topt 变量,它运行得很好。
library(rstatix)
Topt_bonf <- T_data %>%
group_by(Curve) %>%
anova_test(dv = Topt,wid = mod_id,within = Treatment) %>%
get_anova_table() %>%
adjust_pvalue(method = "bonferroni")
Topt_bonf
这给出:
曲线 | DFn | DF |
---|---|---|
第三 | 2 | 10 |
第四 | 2 | 12 |
第五个 | 2 | 10 |
第六个 | 2 | 14 |
然而,相同的代码为 Aopt 变量给出了一个奇怪的结果,其中 DFn 和 DFd 对于 Curve = "Fifth" 是不正确的。
Aopt_bonf <- T_data %>%
group_by(Curve) %>%
anova_test(dv = A_at_Topt,within = Treatment) %>%
get_anova_table() %>%
adjust_pvalue(method = "bonferroni")
Aopt_bonf
这给出:
曲线 | DFn | DF |
---|---|---|
第三 | 2 | 10 |
第四 | 2 | 12 |
第五个 | 1.07 | 5.35 |
第六个 | 2 | 14 |
有什么想法吗?谢谢
解决方法
问题是 anova_test() 函数没有公式参数,所以很混乱。
使用 dv~var lm 符号解决了这个问题。
请参阅以下帖子:
Unexplained error with anova_test from rstatix
Aopt_bonf <- T_data %>%
group_by(Curve) %>%
anova_test(A_at_Topt~Treatment,wid = mod_id,within = Treatment) %>%
get_anova_table() %>%
adjust_pvalue(method = "bonferroni")
Aopt_bonf
,
您看到的问题不是使用 group_by()
的结果。相反,这是由于温室-盖瑟校正。所以,让我们取一个 'T_data' 的子集来简化。下面我们来看看数据
Curve == 'Fifth' 的子集。
# subset
T_data_sub <- T_data[T_data$Curve %in% "Fifth",]
使用此代码和您的原始代码,anova_test()
正在执行 III 型方差分析,
基于 car::Anova()
函数。
> anova_test(data = T_data_sub,dv = A_at_Topt,within = Treatment)
ANOVA Table (type III tests)
$ANOVA
Effect DFn DFd F p p<.05 ges
1 Treatment 2 10 0.726 0.508 0.079
$`Mauchly's Test for Sphericity`
Effect W p p<.05
1 Treatment 0.131 0.017 *
$`Sphericity Corrections` # HERE IS WHERE THE DIFFERENT DEGREES OF FREEDOM COME FROM
Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF] p[HF]<.05
1 Treatment 0.535 1.07,5.35 0.44 0.562 1.12,5.62 0.446
由于 Mauchly 球形度检验的 p 值显着,因此使用 Greenhouse-Geisser 校正调整了自由度。这就是为什么您的第二个屏幕截图与第一个屏幕截图具有不同的自由度。
如果您改为指定公式来指定模型,anova_test()
将执行基于 stats:aov() 的 II 型方差分析。
> anova_test(data = T_data_sub,A_at_Topt ~ Treatment,within = Treatment)
Coefficient covariances computed by hccm()
ANOVA Table (type II tests)
Effect DFn DFd F p p<.05 ges
1 Treatment 2 15 0.642 0.54 0.079
请注意,在这种情况下,使用公式时,wid
和 within
参数不会影响输出。它只是进行单向方差分析。
> anova_test(data = T_data_sub,A_at_Topt ~ Treatment)
Coefficient covariances computed by hccm()
ANOVA Table (type II tests)
Effect DFn DFd F p p<.05 ges
1 Treatment 2 15 0.642 0.54 0.079