和弦算法:前任究竟何时变为非零?

问题描述

我正在查看和弦算法 here 的伪代码

// create a new Chord ring.
n.create()
    predecessor := nil
    successor := n

// join a Chord ring containing node n'.
n.join(n')
    predecessor := nil
    successor := n'.find_successor(n)

// called periodically. n asks the successor
// about its predecessor,verifies if n's immediate
// successor is consistent,and tells the successor about n
n.stabilize()
    x = successor.predecessor
    if x ∈ (n,successor) then
        successor := x
    successor.notify(n)

// n' thinks it might be our predecessor.
n.notify(n')
    if predecessor is nil or n'∈(predecessor,n) then
        predecessor := n'

// called periodically. refreshes finger table entries.
// next stores the index of the finger to fix
n.fix_fingers()
    next := next + 1
    if next > m then
        next := 1
    finger[next] := find_successor(n+{\displaystyle 2^{next-1}}2^{next-1});

// called periodically. checks whether predecessor has Failed.
n.check_predecessor()
    if predecessor has Failed then
        predecessor := nil

我正在努力理解它。我的具体问题是:predecessor 字段究竟何时才会为非空?

考虑节点 id 1 加入的情况。它的后继为1,前驱为nil。

现在说有 10 个连接的节点。其后继为1,前驱为nil。

稳定例程取决于非 nil 的前驱,在这种情况下它不是两个节点。

那么算法在这一点上是如何进行的?

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)