问题描述
我的代码显示您的步骤的时间复杂度是多少?我试图通过做 O(T+n+n^2+n) = O(T+2n+n^2) = O(n^2) 来弄清楚。我说的对吗?
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int main()
{
int T,n,nClone;
cin >> T;
while (T--) { //O(T)
//inputting p[n]
scanf_s("%d",&n);
nClone = n;
int* p = new int[n];
for (int i = 0; i < n; i++) { //O(n)
scanf_s("%d",&p[i]);
}
vector <int>pDash;
while (n != 0) { //O(n^2)
//*itr = largest element in the array
auto itr = find(p,p + n,*max_element(p,p + n));
for (int i = distance(p,itr); i < n; i++) {
pDash.push_back(p[i]);
}
n = distance(p,itr);
}
for (int i = 0; i < nClone; i++) { //O(n)
printf("%d\n",pDash[i]);
}
delete[] p;
}
return 0;
}
解决方法
复杂性算术的经验法则是
- 随后的循环被添加:
O(loop1) + O(loop2)
- 嵌套循环相乘:
O(loop1) * O(loop2)
就你而言:
while (T--) { // O(T)
..
// nested in "while": O(T) * O(n)
for (int i = 0; i < n; i++) { // O(n)
...
}
// nested in "while": O(T) * O(n)
while (n != 0) { // O(n)
// nested in both "while"s : O(T) * O(n) * O(n)
for (int i = distance(p,itr); i < n; i++) { // O(n)
...
}
}
// nested in "while": O(T) * O(n)
for (int i = 0; i < nClone; i++) { // O(n)
...
}
}
我们有:
O(T) * (O(n) + O(n) * O(n) + O(n)) == O(T * n^2)