问题描述
有没有更好的方法来做到这一点?如何用零填充张量,而不创建新的张量对象?我需要输入始终是相同的 batchsize
,所以我想用零填充小于 batchsize
的输入。就像序列长度较短时在 NLP 中填充零一样,但这是批量填充。
目前,我创建了一个新的张量,但正因为如此,我的 GPU 将耗尽内存。我不想将批量减少一半来处理这个操作。
import torch
from torch import nn
class MyModel(nn.Module):
def __init__(self,batchsize=16):
super().__init__()
self.batchsize = batchsize
def forward(self,x):
b,d = x.shape
print(x.shape) # torch.Size([7,32])
if b != self.batchsize: # 2. I need batches to be of size 16,if batch isn't 16,I want to pad the rest to zero
new_x = torch.zeros(self.batchsize,d) # 3. so I create a new tensor,but this is bad as it increase the GPU memory required greatly
new_x[0:b,:] = x
x = new_x
b = self.batchsize
print(x.shape) # torch.Size([16,32])
return x
model = MyModel()
x = torch.randn((7,32)) # 1. shape's batch is 7,because this is last batch,and I dont want to "drop_last"
y = model(x)
print(y.shape)
解决方法
你可以像这样填充额外的元素:
import torch.nn.functional as F
n = self.batchsize - b
new_x = F.pad(x,(0,n,0)) # pad the start of 2d tensors
new_x = F.pad(x,n)) # pad the end of 2d tensors
new_x = F.pad(x,n)) # pad the end of 3d tensors