R:GLM 模型和 optim() 包之间估计参数的差异

问题描述

我的目的是用 R 中的 optim() 包找到估计参数。 我将我的结果与 R 中的 GLM 模型进行比较。代码

d <- read.delim("http://dnett.github.io/S510/disease.txt")
d$disease=factor(d$disease)
d$ses=factor(d$ses)
d$sector=factor(d$sector)
str(d)

oreduced <- glm(disease~age+sector,family=binomial(link=logit),data=d)
summary(oreduced)

y<-as.numeric(as.character(d$disease))
x1<-as.numeric(as.character(d$age))
x2<-as.numeric(as.character(d$sector))

nlldbin=function(param){
  eta<-param[1]+param[2]*x1+param[3]*x2
  p<-1/(1+exp(-eta))
  -sum(y*log(p)+(1-y)*log(1-p),na.rm=TRUE)
}
MLE_estimates<-optim(c(Intercept=0.1,age=0.1,sector2=0.1),nlldbin,hessian=TRUE)

MLE_estimatesenter

GlM 结果是

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) -2.15966    0.34388  -6.280 3.38e-10 ***
age          0.02681    0.00865   3.100 0.001936 ** 
sector2      1.18169    0.33696   3.507 0.000453 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

并使用 optim()

$par
  Intercept         age     sector2 
-3.34005918  0.02680405  1.18101449 

有人请告诉我为什么不一样吗?以及如何解决这个问题?谢谢

解决方法

优化版本中的x2 编码错误。试试:

nlldbin <- function(param) {
  eta <- param[1] + param[2] * x1 + param[3] * (x2 == 2)
  p <- 1 / (1 + exp(-eta))
  - sum(y * log(p) + (1-y) * log(1-p),na.rm = TRUE)
}
st <- c(Intercept = 0.1,age = 0.1,sector2 = 0.1)
MLE_estimates <- optim(st,nlldbin,hessian = TRUE)

MLE_estimates$par
##   Intercept         age     sector2 
## -2.15932867  0.02680381  1.18158898 

coef(oreduced)
## (Intercept)         age     sector2 
## -2.15965912  0.02681289  1.18169345 

注意,如果你愿意使用 dbinom 和 plogis,nlldbin 中的最后两行可以写成如下:

-sum(dbinom(y,1,plogis(eta),log = TRUE))