使用 dtype 拟合具有 numpy 变化的多项式,即使实际数据值保持不变

问题描述

我有一个xdataydata 组成的数据集,我想对其进行多项式拟合,但由于某种原因,拟合结果取决于数据集的 dtype,即使尽管数据的实际值保持不变。我了解,如果您更改 dtype,例如从floatint,可能会有一些信息丢失,但在这种情况下,我从'f4'转换为'f8',因此没有信息丢失,这是为什么我不知所措。这是怎么回事?

import numpy as np
from numpy.polynomial import polynomial

x32 = np.array([
    1892.8972,1893.1168,1893.1626,1893.4313,1893.4929,1895.6392,1895.7642,1896.4286,1896.5693,1897.313,1898.4648
],dtype='f4')

y32 = np.array([
    510.83655,489.91592,486.4508,469.21814,465.7902,388.65576,385.37637,369.07236,365.8301,349.7118,327.4062
],dtype='f4')

x64 = x32.astype('f8')
y64 = y32.astype('f8')

a,residuals1,_,_ = np.polyfit(x32,y32,2,full=True)
b,residuals2,_ = np.polyfit(x64,y64,full=True)

c,(residuals3,_) = polynomial.polyfit(x32,full=True)
d,(residuals4,_) = polynomial.polyfit(x64,full=True)

print(residuals1,residuals3,residuals4)  # [] [195.86309188] [] [195.86309157]
print(a)        # [ 3.54575804e+00 -1.34738721e+04  1.28004924e+07]
print(b)        # [-8.70836523e-03  7.50419309e-02  3.15525483e+04]
print(c[::-1])  # [ 3.54575804e+00 -1.34738721e+04  1.28004924e+07]
print(d[::-1])  # [-8.7083541e-03   7.5099051e-02   3.1552398e+04 ]

我也只注意到了这个问题,因为我也对残差值感兴趣,结果它们变成了空值,这导致我的程序崩溃。

解决方法

这种不同的行为是由于 polynomial 中的 rcond,它依赖于精度:

    rcond : float,optional
        Relative condition number of the fit. Singular values smaller than
        this relative to the largest singular value will be ignored. The
        default value is len(x)*eps,where eps is the relative precision of
        the float type,about 2e-16 in most cases.

...

    # set rcond
    if rcond is None:
        rcond = len(x)*finfo(x.dtype).eps

将 32 位示例的 rcond 设置为适当的小值将产生与 64 位示例相同的结果(例如 rcond=1e-7 或更小)。

,

差异是由于 polyfit()rcond 隐藏参数对于 float32 和 float64 是不同的。这是近似的相对误差。对于 float32,其默认值约为 2e-7,对于 float64,其默认值约为 2e-16。如果您自己指定相同的 rcond 参数,那么您将获得相同的结果。

下面的代码使用 rcond 参数并使用 np.polyval 绘制图表以显示几乎相同的视觉效果。

Try it online!

import numpy as np
from numpy.polynomial import polynomial
import matplotlib.pyplot as plt

x32 = np.array([
    1892.8972,1893.1168,1893.1626,1893.4313,1893.4929,1895.6392,1895.7642,1896.4286,1896.5693,1897.313,1898.4648
],dtype = 'f4')

y32 = np.array([
    510.83655,489.91592,486.4508,469.21814,465.7902,388.65576,385.37637,369.07236,365.8301,349.7118,327.4062
],dtype = 'f4')

x64 = x32.astype('f8')
y64 = y32.astype('f8')

rcond = 2e-7

a,residuals1,_,_ = np.polyfit(x32,y32,2,full=True,rcond = rcond)
b,residuals2,_ = np.polyfit(x64,y64,rcond = rcond)

c,(residuals3,_) = polynomial.polyfit(x32,rcond = rcond)
d,(residuals4,_) = polynomial.polyfit(x64,rcond = rcond)

print(residuals1,residuals3,residuals4)  
# [] [195.86309188] [] [195.86309157]
print(a)  # [ 3.54575804e+00 -1.34738721e+04  1.28004924e+07]
print(b)  # [-8.70836523e-03  7.50419309e-02  3.15525483e+04]
print(c)  # [ 1.28004924e+07 -1.34738721e+04  3.54575804e+00]
print(d)  # [ 3.1552398e+04  7.5099051e-02 -8.7083541e-03]

plt.plot(x64,label = 'orig')
plt.plot(x32,np.polyval(a,x32),label = 'x32_v0')
plt.plot(x64,np.polyval(b,x64),label = 'x64_v0')
plt.plot(x32,np.polyval(c[::-1],label = 'x32_v1')
plt.plot(x64,np.polyval(d[::-1],label = 'x64_v1')
plt.legend()
plt.show()

enter image description here