从数值数据集中在 python 中绘制 3D 姿势骨架数据

问题描述

我正在从事人体姿势预测项目,我需要根据数值数据集绘制人体 3D 姿势骨架,以比较地面实况和预测值。喜欢这张图片enter image description here 我已经在使用这个简单的代码了,

ax = plt.axes(projection='3d')
fig = plt.figure()
fig = plt.figure()
xdata = np.array(data[values])
ydata = np.array(data[values])
zdata = np.array(data[values])
ax.scatter3D(xdata,ydata,zdata,c=zdata)
plt.show()

但它向我展示了 3D 图中的点,我知道它不正确,所以这里是问题: **有没有要调用的库或函数? (因为我已经使用了分散,我知道这是错误的) [我的数据集有 6395 行和 54 列,我正在寻找一种方法显示例如每次或更少的 10 个不同的姿势。]

解决方法

import typing as tp
import numpy as np
import matplotlib.pyplot as plt


def get_chain_dots(
        dots: np.ndarray,# shape == (n_dots,3)
        chain_dots_indexes: tp.List[int],# length == n_dots_in_chain
                                          # in continuous order,i.e. 
                                          # left_hand_ix >>> chest_ix >>> right_hand_ix
        ) -> np.ndarray:    # chain of dots
    """Get continuous chain of dots
    
    chain_dots_indexes - 
        indexes of points forming a continuous chain;
        example of chain: [hand_l,elbow_l,shoulder_l,chest,shoulder_r,elbow_r,hand_r]
    """
    return dots[chain_dots_indexes]


def get_chains(
        dots: np.ndarray,3)
        spine_chain_ixs: tp.List[int],# pelvis >>> chest >>> head
        hands_chain_ixs: tp.List[int],# left_hand >>> chest >>> right_hand
        legs_chain_ixs: tp.List[int]   # left_leg >>> pelvis >>> right_leg
        ):
    return (get_chain_dots(dots,spine_chain_ixs),get_chain_dots(dots,hands_chain_ixs),legs_chain_ixs))


def subplot_nodes(dots: np.ndarray,3)
                  ax):
    return ax.scatter3D(*dots.T,c=dots[:,-1])


def subplot_bones(chains: tp.Tuple[np.ndarray,...],ax):
    return [ax.plot(*chain.T) for chain in chains]


def plot_skeletons(
        skeletons: tp.Sequence[np.ndarray],chains_ixs: tp.Tuple[tp.List[int],tp.List[int],tp.List[int]]):
    fig = plt.figure()
    for i,dots in enumerate(skeletons,start=1):
        chains = get_chains(dots,*chains_ixs)
        ax = fig.add_subplot(2,5,i,projection='3d')
        subplot_nodes(dots,ax)
        subplot_bones(chains,ax)
    plt.show()


def test():
    """Plot random poses of simplest skeleton"""
    skeletons = np.random.standard_normal(size=(10,11,3))
    chains_ixs = ([0,1,2,3,4],# hand_l,hand_r
                  [5,6],# pelvis,head
                  [7,8,9,10]) # foot_l,knee_l,pelvis,knee_r,foot_r
    plot_skeletons(skeletons,chains_ixs)


if __name__ == '__main__':
    test()

绘制渐变色线see。 另外还有docs