问题描述
def fakeDataGenerator(chanNum=31):
#This function generates the data I want to recover and it shows the characters of the data I am working on. It's continuous and differentiable.
peaks = random.sample(range(chanNum),random.choice(range(3,10)))
peaks.append(chanNum)
peaks.sort()
out = [random.choice(range(-5,5))]
delta = 1
while len(out) < chanNum:
if len(out) < peaks[0]:
out.append(out[-1]+delta)
elif len(out) == peaks[0]:
delta *= -1
peaks.pop(0)
return out
originalData = torch.tensor(fakeDataGenerator(31)).reshape(1,31).float()
encoder = torch.rand((31,9)).float() #encoder here is something that messed the data up
code = torch.matmul(originalData,encoder) #here we get the code which is messed up by the encoder
decoder = torch.pinverse(encoder) #We can make use of the encoder matrix to decode the data.
#For example,here I apply pinverse to recover the data,but...
decoded = torch.matmul(code,decoder)
print(decoded - originalData) #the result is no good.
能否利用原始数据和编码器的特性更好地恢复原始数据?该程序运行的环境不允许使用神经网络等复杂模型。
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)