Rstan - 高斯随机游走

问题描述

我正在尝试根据高斯随机游走对参数进行采样。 在 R 中,代码如下所示:

#simulate a Gaussian random walk
#N  :  number of steps
#x0 :  initial offset
#mu :  drift veLocity
#variance : step size
Gauss_RandomWalk <- function(N,x0,mu,variance) {
  z <- cumsum(rnorm(n=N,mean=mu,sd=sqrt(variance)))
  t <- 1:N
  x <- (x0 + t*mu + z)
  return(x)
}

实际上,设置 x0=0.mu=0.variance=0.035**2 时的结果看起来不错且合理:

[1]  0.040703269  0.009159686  0.052360030  0.059352074  0.092739218  0.098240752  0.113957813  0.064187776
[9]  0.062757728  0.063948224  0.034591074  0.004828493  0.019809969  0.032135111  0.025692763 -0.031678858
[17] -0.048033007 -0.020708105 -0.032231674  0.004917305  0.030961430  0.099054042  0.043441737 -0.010513085

每当我尝试在 Stan 中执行此操作时,例如根据 here 表示的内容

// model to be fitted
model {
  sqrtQ ~ student_t(2,0.035);
  // here we define the random walk for the log_Rt parameter
  log_Rt[1] ~ normal(0.,0.035);
    for (t in 2:number_days) {
        log_Rt[t] ~ normal(log_Rt[t-1],sqrtQ);
  }
  print(log_Rt);
(...)
}

结果并不好。举个例子,跳跃 -0.839043 -> 1.91956 大约是标准偏差的 85 倍,在统计上是不可能的......但为什么会发生这种跳跃?

Chain 1: [0.382303,-0.489057,0.33374,-0.839043,1.91956,0.249953,-1.88793,1.61106,1.11189,-0.725063,-0.513174,1.79012,1.57758,0.75819,0.525524,1.44762,1.19118,0.485563,-1.48318,-1.36389,1.96355,0.321416,-0.365132,-0.644287,0.0981577,1.02943,-1.27993,-1.98085,-1.75191,-1.76489,1.60888,1.48925,-0.0452427,-0.92583,-1.21594,-0.906329,-0.700237,-0.208039,0.493656,0.490295,-1.61091,1.94587,0.758567,-1.02318,-1.92659,-0.999492,1.78042,0.214125,-0.0158054,-0.753422,.......

编辑:我也试过了:

// model to be fitted
model {
  // here we define the random walk for the log_Rt parameter
  log_Rt[1] ~ normal(0.,0.035);
  }
  print(log_Rt);
(...)
}

但事情根本没有改变。

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)