了解 raster::extract 和 terra:extract

问题描述

我在完全理解 terra:extract 时遇到问题。我希望提取管理 GADM 多边形的平均栅格值。我的栅格每个国家/地区只有一个值。我希望特定国家/地区内的每个行政多边形具有相同的值,并且一些包含某些国家边界的多边形被分配区域加权平均值。不幸的是,我当前的脚本不是这种情况。 raster::extract 似乎给出了合理的结果,但不是 terra:extract (请参阅下面的示例代码 - 提供具有不同值的输出)。根据我下面的代码,有人可以解释我为什么吗?非常感谢。

## libraries
library(terra)
library(raster)

#===============================================    
## sample example - provides results as expected (1.333,that is (2*0.5+1*1)/1.5)

# sample raster and Spatialpolygons
r <- raster(ncol=2,nrow=3,xmn= 0,ymn= 0,xmx = 30,ymx = 30)
r[] <- c(2,2,1,NA,NA)
cds <- rbind(c(7.5,0),c(7.5,20),c(30,10))
library(sp)
p = polygon(cds)
ps = polygons(list(p),1)
sps = Spatialpolygons(list(ps))
plot(r)
plot(sps,add=T)

enter image description here

# test raster package
test1 <- raster::extract(r,sps,fun=mean,na.rm=T,weights=TRUE) 
test1 # I get 1.333333 which is what I would expect

# test terra package
sps.spatv <- vect(sps)
r.spatR <-  rast(r) #conversion to SpatRaster class

test2 <- terra::extract(r.spatR,sps.spatv,weights=TRUE,exact=TRUE,touches=TRUE) 
test2 # I get 1.333333 which is what I would expect  

#===============================================    
## sample code that leads to different results between raster and terra packages - I wish to understand why such difference.
# sample SpatialpolygonsDataFrame 
ETH <- getData("GADM",country = 'ETH',level = 2)
SOM <- getData("GADM",country = 'SOM',level = 2)
sps <- bind(ETH,SOM)

# sample raster stack
ra <- raster(ncol=31,nrow=24,xmn= 33.3,ymn=  3.67,xmx = 47.5,ymx = 14.65,crs=crs(sps) )
ra[] <- rep(10,24*31)
ra2 <- raster(ncol=31,ymn= -7.31,ymx = 3.67,crs=crs(sps) )
ra2[] <- rep(20,24*31)
ra3 <- merge(ra,ra2)

rb <- raster(ncol=31,crs=crs(sps) )
rb[] <- rep(35,24*31)
rb2 <- raster(ncol=31,crs=crs(sps) )
rb2[] <- rep(45,24*31)
rb3 <- merge(rb,rb2)

stack.r <- stack(ra3,rb3)
names(stack.r) <- c("ra3","rb3")

plot(stack.r[[1]])
plot(sps,add=T)

# raster::extract
rastR <- raster::extract(stack.r,weights=TRUE)

# > head(rastR)
# [,1] [,2]
# [1,]   10   35
# [2,]   10   35
# [3,]   10   35
# [4,]   10   35
# [5,]   10   35
# [6,]   10   35

rastR2 <- rastR %>%
  cbind(sps@data["GID_2"]) # add ID

# terra::extract
sps.spatv <- vect(sps)
stack.r.spatR <-  rast(stack.r) 
rastT <- terra::extract(stack.r.spatR,exact=TRUE)
# > head(rastT)
# ID ra3 rb3
# [1,]  1  10  10
# [2,]  2  10  10
# [3,]  3  10  10
# [4,]  4  10  10
# [5,]  5  10  10
# [6,]  6  10  10
rastT2 <- rastT %>%
  cbind(sps@data["GID_2"]) # add ID

解决方法

更新答案

感谢您提出的扩展问题,以及您的坚持,并为这么长时间才给您回复表示歉意。这是 terra 中我没有立即发现的错误。加权平均结果乱码(矩阵未按正确顺序填充)。现已修正:

您的简化示例数据

library(raster)
library(terra)
#terra version 1.2.17

sp <- getData("GADM",country = 'ETH',level = 2)[1:3,]
sv <- vect(sp)

ra <- raster(ncols=31,nrows=24,xmn= 33.3,ymn=  3.67,xmx = 47.5,ymx = 14.65,crs=crs(sp),vals=rep(10,24*31))
rb <- raster(ncols=31,crs=crs(sv),vals=rep(35,24*31))

r_raster <- stack(ra,rb)
names(r_raster) <- c("ra","rb")
r_terra <-  rast(r_raster) 

测试无权重small=FALSE的{​​{1}}和raster的{​​{1}}(默认)

touches=FALSE

测试无权重terra用于extract(r_raster,sp,fun=mean,na.rm=T,small=FALSE) # [,1] [,2] #[1,] NA NA #[2,] 10 35 #[3,] 10 35 extract(r_terra,sv,na.rm=T) # ID ra rb #1 1 NaN NaN #2 2 10 35 #3 3 10 35 (默认)和small=TRUE用于raster

touches=TRUE

测试权重

terra

此问题已在 1.2.17 版中修复。您应该可以像这样在一小时内安装该版本

extract(r_raster,na.rm=T)
#      ra rb
# [1,] 10 35
#[2,] 10 35
#[3,] 10 35

extract(r_terra,touches=TRUE)
#  ID ra rb
#1  1 10 35
#2  2 10 35
#3  3 10 35
 

我将在未来几天进一步测试它;希望下周把它送到 CRAN。它曾经有效并且比我做得更快,但显然没有足够的测试用例。