无法在 Keras 中解释优化器标识符 SGD

问题描述

我已经尝试替换这个

from keras.optimizers import SGD

from tensorflow.keras.optimizers import SGD 

但这仍然不起作用

这是我的代码

from tensorflow.keras.optimizers import SGD 
from keras.initializers import RandomUniform
from keras.callbacks import TensorBoard
from tensorflow import keras
import tensorflow as tf
init = RandomUniform(minval=0,maxval=1)
model = Sequential()
model.add(Dense(5,input_dim=2,activation='tanh',kernel_initializer=init))
model.add(Dense(5,kernel_initializer=init))
model.add(Dense(1,activation='sigmoid',kernel_initializer=init))

opt = SGD(learning_rate = 0.01,momentum=0.9)
model.compile(loss='binary_crossentropy',optimizer= opt,metrics=['accuracy'])

tb = TensorBoard(histogram_freq=1,write_grads=True)

model.fit(trainX,trainy,validation_data=(testX,testy),epochs=500,verbose=0,callbacks=[tb])

这是错误:

ValueError                                Traceback (most recent call last)
<ipython-input-26-a0282a5bd896> in <module>
     28 # compile model
     29 opt = SGD(learning_rate = 0.01,momentum=0.9)
---> 30 model.compile(loss='binary_crossentropy',metrics=['accuracy'])
     31 # prepare callback
     32 tb = TensorBoard(histogram_freq=1,write_grads=True)

~\Anaconda3\lib\site-packages\keras\engine\training.py in compile(self,optimizer,loss,metrics,loss_weights,weighted_metrics,run_eagerly,steps_per_execution,**kwargs)
    546       self._run_eagerly = run_eagerly
    547 
--> 548       self.optimizer = self._get_optimizer(optimizer)
    549       self.compiled_loss = compile_utils.LossesContainer(
    550           loss,output_names=self.output_names)

~\Anaconda3\lib\site-packages\keras\engine\training.py in _get_optimizer(self,optimizer)
    584       return opt
    585 
--> 586     return tf.nest.map_structure(_get_single_optimizer,optimizer)
    587 
    588   @trackable.no_automatic_dependency_tracking

~\Anaconda3\lib\site-packages\tensorflow\python\util\nest.py in map_structure(func,*structure,**kwargs)
    865 
    866   return pack_sequence_as(
--> 867       structure[0],[func(*x) for x in entries],868       expand_composites=expand_composites)
    869 

~\Anaconda3\lib\site-packages\tensorflow\python\util\nest.py in <listcomp>(.0)
    865 
    866   return pack_sequence_as(
--> 867       structure[0],868       expand_composites=expand_composites)
    869 

~\Anaconda3\lib\site-packages\keras\engine\training.py in _get_single_optimizer(opt)
    575 
    576     def _get_single_optimizer(opt):
--> 577       opt = optimizers.get(opt)
    578       if (loss_scale is not None and
    579           not isinstance(opt,lso.LossScaleOptimizer)):

~\Anaconda3\lib\site-packages\keras\optimizers.py in get(identifier)
    131   else:
    132     raise ValueError(
--> 133         'Could not interpret optimizer identifier: {}'.format(identifier))

ValueError: Could not interpret optimizer identifier: <tensorflow.python.keras.optimizer_v2.gradient_descent.SGD object at 0x000001BDF251CB48>

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)