坚持执行Wikipedia的A *“星星”算法

问题描述

|| 我正在从Wikipedia的文章中的此伪代码实现A *搜索算法:
function A*(start,goal)
     closedset := the empty set    // The set of nodes already evaluated.
     openset := set containing the initial node    // The set of tentative nodes to be evaluated.
     came_from := the empty map    // The map of navigated nodes.

     g_score[start] := 0    // Cost from start along best kNown path.
     h_score[start] := heuristic_cost_estimate(start,goal)
     f_score[start] := h_score[start]    // Estimated total cost from start to goal through y.

     while openset is not empty
         x := the node in openset having the lowest f_score[] value
         if x = goal
             return reconstruct_path(came_from,came_from[goal])

         remove x from openset
         add x to closedset
         foreach y in neighbor_nodes(x)
             if y in closedset
                 continue
             tentative_g_score := g_score[x] + dist_between(x,y)

             if y not in openset
                 add y to openset
                 tentative_is_better := true
             else if tentative_g_score < g_score[y]
                 tentative_is_better := true
             else
                 tentative_is_better := false

             if tentative_is_better = true
                 came_from[y] := x
                 g_score[y] := tentative_g_score
                 h_score[y] := heuristic_cost_estimate(y,goal)
                 f_score[y] := g_score[y] + h_score[y]

     return failure


 function reconstruct_path(came_from,current_node)
     if came_from[current_node] is set
         p = reconstruct_path(came_from,came_from[current_node])
         return (p + current_node)
     else
         return current_node
我被困在要求检索setSet中具有最低f值的节点的行上。 openSet是何时填充的?什么?它应该只在第一次运行时就开始吗? 我也不理解伪造的重构路径:
 ArrayList<Point> reconstructPath(Point cameFrom,Point current_node){

        //if came_from[current_node] is set //what does it mean \"ïs set\"?
        //???
        return null;

    }
伪指令应如何实施?
 boolean AStar (Point start,Point goal){

        HashSet <Point>closedSet = new HashSet<Point>();
        HashSet <Point>openSet = new HashSet<Point>();
        HashMap <Point,Point> came_from = new HashMap<Point,Point>();

        HashMap <Point,Integer> g_score = new HashMap<Point,Integer>();
        HashMap <Point,Integer> h_score =new HashMap<Point,Integer> f_score =new HashMap<Point,Integer>();

        g_score.put(start,0);
        h_score.put(start,heuristic_cost_estimate(start,goal));
        f_score.put(start,goal));


        openSet.add(start);
        while(!openSet.isEmpty()){

            // x := the node in openset having the lowest f_score[] value
            //????
        }

        return false;

    }

 Integer heuristic_cost_estimate(Point start,Point goal){

        double minusI = (start.I-goal.I);
        int minusIi =(int)Math.pow(minusI,2.0D);

        double minusJ = (start.J-goal.J);
        int minusIj =(int)Math.pow(minusJ,2.0D);

        int ri = minusIj + minusIi;

        Integer result = new Integer(ri); 

        return result;


    }



ArrayList<Point> reconstructPath(Point cameFrom,Point current_node){

        //if came_from[current_node] is set //what does it mean \"ïs set\"?
        //???
        return null;

    }
    

解决方法

        开放集最初包含您从中开始搜索的节点-起始节点。
openset := set containing the initial node    // The set of tentative nodes to be evaluated.
至于重构路径部分-每次处理一个节点并发现可以从当前节点以较低的成本到达其邻居
X
时,应将
X
came_from
条目设置为当前正在处理的节点。找到目标节点后,可以按照目标节点中的“ 5”条目来重建路径,直到到达源节点为止。您可以通过修改
Point
类以使其具有一个名为ѭ5additional的附加字段来实现此目的。 从哈希表中提取具有最低值的节点的唯一方法是迭代哈希表。另一种选择是另外有一个树形图,它使您可以快速找到具有最小值的元素(或有一个专门的堆,例如二进制或斐波那契堆,它还允许您减少堆中元素的值)。 这是我最初学习A *的地方。