问题描述
我最终试图从 Monday.com API 请求的 JSON 输出中生成一个 csv。
以下是我目前的代码。我在尝试将 JSON 拼合到表格中时遇到问题。
import requests
import json
import pandas as pd
apiKey = "API Key Here"
apiUrl = "https://api.monday.com/v2"
headers = {"Authorization" : apiKey}
query2 = '{boards(ids:123456) {items{name,column_values{title text } } } }'
data = {'query' : query2}
json_data = json.loads(requests.post(url=apiUrl,json=data,headers=headers).text)
norm=pd.json_normalize(json_data,'items',['data','boards'])
来自 API 的 JSON 输出。为了便于阅读,我添加了一些换行符。
{'data':
{'boards':
[{'items':
[{'name': 'Item 1','column_values': [{'title': 'Person','text': 'Mark McCoy'},{'title': 'Status','text': None},{'title': 'Date','text': '2021-02-05'}]},{'name': 'This is a new item','text': ''},'text': '2021-04-17'}]},{'name': 'Item 5','text': '2021-02-13'}]},{'name': 'Item 2','text': 'Done'},'text': '2021-05-14'}]}]}]},'account_id': 00000000}
Traceback (most recent call last):
File "/Users/markamccoy/Desktop/MondayPy/stack.py",line 14,in <module>
norm=pd.json_normalize(json_data,'boards'])
File "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/pandas/io/json/_normalize.py",line 336,in _json_normalize
_recursive_extract(data,record_path,{},level=0)
File "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/pandas/io/json/_normalize.py",line 309,in _recursive_extract
recs = _pull_records(obj,path[0])
File "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/pandas/io/json/_normalize.py",line 248,in _pull_records
result = _pull_field(js,spec)
File "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/pandas/io/json/_normalize.py",line 239,in _pull_field
result = result[spec]
KeyError: 'items'
我完全是 python 菜鸟,阅读 Pandas 文档已经让我走到了这一步,但我有点不合时宜。
解决方法
如果您使用 normalize。结果将如下所示。
df = pd.json_normalize(json_data['data']['boards'][0]['items'],record_path='column_values',meta=['name'])
title text name
0 Person Mark McCoy Item 1
1 Status None Item 1
2 Date 2021-02-05 Item 1
3 Person This is a new item
4 Status None This is a new item
5 Date 2021-04-17 This is a new item
但我认为这不是您想要的。并且没有示例可以在 json_normalize 中平铺那种数组。
data = [ [item['name']]+[c_v['text'] for c_v in item['column_values']] for item in json_data['data']['boards'][0]['items']]
df = pd.DataFrame(data,columns=['name','Person','Status','Date'])
name Person Status Date
0 Item 1 Mark McCoy None 2021-02-05
1 This is a new item None 2021-04-17
2 Item 5 None 2021-02-13
3 Item 2 Done 2021-05-14
所以我只能用 python 把它弄平。
如果您还有其他问题,请给我评论