问题描述
我是 DL/实时对象检测领域的新手,我想从 youtube 上学习一些东西。我在 youtube 上观看了关于在 yolov3 上实时自定义对象检测的视频 https://www.youtube.com/watch?v=DLngCtsG3bk 并且我正确地完成了所有步骤。当我在笔记本电脑上运行对象检测 python 文件时,它在 CPU 上运行,我只能接收 2-3 fps。请谁能告诉我如何使用我的 GPU 来运行它。我得到的文件 yolov3_training_last.weights
、yolov3_testing.cfg
和 classes.txt
。 python 文件包含在下面,当我运行它时,我说我得到了低 fps。如果有什么方法可以用GPU来增加它,请教我。提前致谢。
Python 文件:
import cv2
import numpy as np
import time
net = cv2.dnn.readNet('yolov3_training_last.weights','yolov3_testing.cfg')
classes = []
with open("classes.txt","r") as f:
classes = f.read().splitlines()
cap = cv2.VideoCapture(0)
font = cv2.FONT_HERSHEY_PLAIN
colors = np.random.uniform(0,255,size=(100,3))
# used to record the time when we processed last frame
prev_frame_time = 0
# used to record the time at which we processed current frame
new_frame_time = 0
while True:
_,img = cap.read()
height,width,_ = img.shape
blob = cv2.dnn.blobFromImage(img,1/255,(416,416),(0,0),swapRB=True,crop=False)
net.setInput(blob)
output_layers_names = net.getUnconnectedOutLayersNames()
layerOutputs = net.forward(output_layers_names)
boxes = []
confidences = []
class_ids = []
for output in layerOutputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.95:
center_x = int(detection[0]*width)
center_y = int(detection[1]*height)
w = int(detection[2]*width)
h = int(detection[3]*height)
x = int(center_x - w/2)
y = int(center_y - h/2)
boxes.append([x,y,w,h])
confidences.append((float(confidence)))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes,confidences,0.2,0.4)
if len(indexes)>0:
for i in indexes.flatten():
x,h = boxes[i]
crop_img = img[y:y+h,x:x+w]
(B,G,R) = [int(x) for x in cv2.mean(crop_img)[:3]]
roi_face= img[y: y+ h,x:x+w]
roi_face = cv2.blur(roi_face,(20,20))
img[y: y+ h,x: x+ w]=[0,0]
img[y: y+ h,x: x+ w]=cv2.add(roi_face,img[y: y+ h,x: x+ w])
label = str(classes[class_ids[i]])
confidence = str(round(confidences[i],2))
color = colors[i]
cv2.rectangle(img,(x,y),(x+w,y+h),color,2)
cv2.putText(img,label + " " + confidence,y+20),font,1,(255,255),2)
font = cv2.FONT_HERSHEY_SIMPLEX
# time when we finish processing for this frame
new_frame_time = time.time()
# Calculating the fps
# fps will be number of frame processed in given time frame
# since their will be most of time error of 0.001 second
# we will be subtracting it to get more accurate result
fps = 1/(new_frame_time-prev_frame_time)
prev_frame_time = new_frame_time
# converting the fps into integer
fps = int(fps)
# converting the fps to string so that we can display it on frame
# by using putText function
fps = str(fps)
# putting the FPS count on the frame
cv2.putText(img,fps,(7,70),3,(100,cv2.LINE_AA)
cv2.imshow('Image',img)
key = cv2.waitKey(1)
if key==27:
break
cap.release()
cv2.destroyAllWindows()
解决方法
暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!
如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。
小编邮箱:dio#foxmail.com (将#修改为@)