如何使用 mlrMBO 和 mlr 进行超参数优化和调整

问题描述

我正在尝试在 R 中在目标是多类分类的数据集上训练 ML 算法(rf、adaboost、xgboost)。对于超参数调整,我使用 MLR 包。

我下面代码的目标是调整参数 mtry 和 nodesize,但将 ntrees 保持在 128(使用 mlrMBO)。但是,我收到以下错误消息。我该如何以正确的方式定义它?

rdesc <- makeResampleDesc("CV",stratify = T,iters=10L) 

traintask <- makeClassifTask(data = df_train,target = "more_than_X_perc_damage")
testtask <- makeClassifTask(data = df_test,target = "more_than_X_perc_damage")

lrn <- makeLearner("classif.randomForest",predict.type = "prob")

# parameter space 
params_to_tune <- makeParamSet(makeIntegerParam("ntree",lower = 128,upper = 128),makeNumericParam("mtry",lower = 0,upper = 1,trafo = function(x) ceiling(x*ncol(train_x))),makeNumericParam("nodesize",trafo = function(x) ceiling(nrow(train_x)^x)))

ctrl = makeTuneControlMBO(mbo.control=mlrMBO::makeMBOControl())
tuned_params <- tuneParams(learner = lrn,task = traintask,control = ctrl,par.set = params_to_tune,resampling = rdesc,measure=acc)

rf_tuned_learner <- setHyperPars(learner = lrn,par.vals = tuned_params$x)

rf_tuned_model <- mlr::train(rf_tuned_learner,traintask)

# prediction performance
pred <- predict(rf_tuned_model,testtask)
performance(pred) 
calculateConfusionMatrix(pred)
stats <- confusionMatrix(pred$data$response,pred$data$truth)
acc_rf_tune <- stats$overall[1] # accuracy
print(acc_rf_tune)

错误(函数(fn,nvars,max = FALSE,pop.size = 1000,max.generations = 100,: Domains[,1] 必须小于或等于 Domains[,2]

提前致谢!

解决方法

暂无找到可以解决该程序问题的有效方法,小编努力寻找整理中!

如果你已经找到好的解决方法,欢迎将解决方案带上本链接一起发送给小编。

小编邮箱:dio#foxmail.com (将#修改为@)