Pandas:是否有办法使用“ droplevel”之类的方法,并在处理过程中使用掉级标签作为前缀/后缀来重命名另一个级别?

问题描述

使用list comprehension用于设置新的列名:

df.columns = df.columns.map('_'.join)

Or:

df.columns = ['_'.join(col) for col in df.columns]

样品:

df = pd.DataFrame({'A':[1,2,2,1],
                   'B':[4,5,6,4],
                   'C':[7,8,9,1],
                   'D':[1,3,5,9]})

print (df)
   A  B  C  D
0  1  4  7  1
1  2  5  8  3
2  2  6  9  5
3  1  4  1  9

df = df.groupby('A').agg([max, min])

df.columns = df.columns.map('_'.join)
print (df)
   B_max  B_min  C_max  C_min  D_max  D_min
A                                          
1      4      4      7      1      9      1
2      6      5      9      8      5      3
print (['_'.join(col) for col in df.columns])
['B_max', 'B_min', 'C_max', 'C_min', 'D_max', 'D_min']

df.columns = ['_'.join(col) for col in df.columns]
print (df)
   B_max  B_min  C_max  C_min  D_max  D_min
A                                          
1      4      4      7      1      9      1
2      6      5      9      8      5      3

如果需要prefix元组的简单交换项:

df.columns = ['_'.join((col[1], col[0])) for col in df.columns]
print (df)
   max_B  min_B  max_C  min_C  max_D  min_D
A                                          
1      4      4      7      1      9      1
2      6      5      9      8      5      3

一个解决方案:

df.columns = ['{}_{}'.format(i[1], i[0]) for i in df.columns]
print (df)
   max_B  min_B  max_C  min_C  max_D  min_D
A                                          
1      4      4      7      1      9      1
2      6      5      9      8      5      3

如果lenof列很大(10 ^ 6),则使用to_seriesstr.join

df.columns = df.columns.to_series().str.join('_')

解决方法

以下查询的屏幕截图:

分组查询

有没有一种方法可以轻松地放下上层列索引和有标签,如单级points_prev_amaxpoints_prev_amingf_prev_amaxgf_prev_amin等?